The role of endothelial MERTK during the inflammatory response in lungs

Autoři: Yitong Li aff001;  Erika S. Wittchen aff001;  Elizabeth Monaghan-Benson aff001;  Cornelia Hahn aff002;  H. Shelton Earp aff004;  Claire M. Doerschuk aff002;  Keith Burridge aff001
Působiště autorů: Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America aff001;  Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America aff002;  Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America aff003;  Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


As a key homeostasis regulator in mammals, the MERTK receptor tyrosine kinase is crucial for efferocytosis, a process that requires remodeling of the cell membrane and adjacent actin cytoskeleton. Membrane and cytoskeletal reorganization also occur in endothelial cells during inflammation, particularly during neutrophil transendothelial migration (TEM) and during changes in permeability. However, MERTK’s function in endothelial cells remains unclear. This study evaluated the contribution of endothelial MERTK to neutrophil TEM and endothelial barrier function. In vitro experiments using primary human pulmonary microvascular endothelial cells found that neutrophil TEM across the endothelial monolayers was enhanced when MERTK expression in endothelial cells was reduced by siRNA knockdown. Examination of endothelial barrier function revealed increased passage of dextran across the MERTK-depleted monolayers, suggesting that MERTK helps maintain endothelial barrier function. MERTK knockdown also altered adherens junction structure, decreased junction protein levels, and reduced basal Rac1 activity in endothelial cells, providing potential mechanisms of how MERTK regulates endothelial barrier function. To study MERTK’s function in vivo, inflammation in the lungs of global Mertk-/- mice was examined during acute pneumonia. In response to P. aeruginosa, more neutrophils were recruited to the lungs of Mertk-/- than wildtype mice. Vascular leakage of Evans blue dye into the lung tissue was also greater in Mertk-/- mice. To analyze endothelial MERTK’s involvement in these processes, we generated inducible endothelial cell-specific (iEC) Mertk-/- mice. When similarly challenged with P. aeruginosa, iEC Mertk-/- mice demonstrated no difference in neutrophil TEM into the inflamed lungs or in vascular permeability compared to control mice. These results suggest that deletion of MERTK in human pulmonary microvascular endothelial cells in vitro and in all cells in vivo aggravates the inflammatory response. However, selective MERTK deletion in endothelial cells in vivo failed to replicate this response.

Klíčová slova:

Endothelial cells – Inflammation – Neutrophils – Permeability – Pneumonia – Small interfering RNAs – Vascular permeability – White blood cells


1. Graham DK, Dawson TL, Mullaney DL, Snodgrass HR, Earp HS. Cloning and mRNA expression analysis of a novel human protooncogene, c-mer. Cell growth & differentiation: the molecular biology journal of the American Association for Cancer Research. 1994;5(6):647–57. 8086340.

2. Rothlin CV, Carrera-Silva EA, Bosurgi L, Ghosh S. TAM receptor signaling in immune homeostasis. Annual review of immunology. 2015;33(1):355–91. doi: 10.1146/annurev-immunol-032414-112103 25594431; PubMed Central PMCID: PMC4491918.

3. Dransfield I, Farnworth S. Axl and Mer Receptor Tyrosine Kinases: Distinct and Nonoverlapping Roles in Inflammation and Cancer? Advances in experimental medicine and biology. 2016;930(Chapter 5):113–32. doi: 10.1007/978-3-319-39406-0_5 27558819.

4. Guttridge KL, Luft JC, Dawson TL, Kozlowska E, Mahajan NP, Varnum B, et al. Mer receptor tyrosine kinase signaling: prevention of apoptosis and alteration of cytoskeletal architecture without stimulation or proliferation. Journal of Biological Chemistry. 2002;277(27):24057–66. doi: 10.1074/jbc.M112086200 11929866.

5. Linger RMA, Keating AK, Earp HS, Graham DK. TAM Receptor Tyrosine Kinases: Biologic Functions, Signaling, and Potential Therapeutic Targeting in Human Cancer. Advances in Cancer Research. 2008;100:100:35–83. doi: 10.1016/S0065-230X(08)00002-X 18620092

6. Lemke G. Biology of the TAM receptors. Cold Spring Harbor perspectives in biology. 2013;5(11):a009076–a. doi: 10.1101/cshperspect.a009076 24186067; PubMed Central PMCID: PMC3809585.

7. Burstyn-Cohen T. TAM receptor signaling in development. The International Journal of Developmental Biology. 2017;61(3-4-5):215–24. doi: 10.1387/ijdb.160285tb 28621419

8. Lemke G, Burstyn-Cohen T. TAM receptors and the clearance of apoptotic cells. Annals of the New York Academy of Sciences. 2010;1209(1):23–9. doi: 10.1111/j.1749-6632.2010.05744.x 20958312; PubMed Central PMCID: PMC3061224.

9. Prasad D, Rothlin CV, Burrola P, Burstyn-Cohen T, Lu Q, García de Frutos P, et al. TAM receptor function in the retinal pigment epithelium. Molecular and cellular neurosciences. 2006;33(1):96–108. doi: 10.1016/j.mcn.2006.06.011 16901715.

10. Camenisch TD, Koller BH, Earp HS, Matsushima GK. A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. Journal of immunology (Baltimore, Md: 1950). 1999;162(6):3498–503. 10092806.

11. Lu Q, Gore M, Zhang Q, Camenisch T, Boast S, Casagranda F, et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature. 1999;398(6729):723–8. doi: 10.1038/19554 10227296.

12. Cohen PL, Caricchio R, Abraham V, Camenisch TD, Jennette JC, Roubey RAS, et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. The Journal of experimental medicine. 2002;196(1):135–40. doi: 10.1084/jem.20012094 12093878; PubMed Central PMCID: PMC2194017.

13. Graham DK, DeRyckere D, Davies KD, Earp HS. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nature reviews Cancer. 2014;14(12):769–85. doi: 10.1038/nrc3847 25568918.

14. Lu Q, Lemke G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science. 2001;293(5528):306–11. doi: 10.1126/science.1061663 11452127.

15. Caberoy NB, Zhou Y, Li W. Tubby and tubby-like protein 1 are new MerTK ligands for phagocytosis. The EMBO journal. 2010;29(23):3898–910. doi: 10.1038/emboj.2010.265 20978472; PubMed Central PMCID: PMC3020645.

16. Tsou W-I, Nguyen K-QN, Calarese DA, Garforth SJ, Antes AL, Smirnov SV, et al. Receptor tyrosine kinases, TYRO3, AXL, and MER, demonstrate distinct patterns and complex regulation of ligand-induced activation. The Journal of biological chemistry. 2014;289(37):25750–63. doi: 10.1074/jbc.M114.569020 25074926; PubMed Central PMCID: PMC4162177.

17. Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature. 2001;411(6834):207–11. doi: 10.1038/35075603 11346799.

18. Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature reviews Immunology. 2002;2(12):965–75. doi: 10.1038/nri957 12461569.

19. Mahajan NP, Earp HS. An SH2 Domain-dependent, Phosphotyrosine-independent Interaction between Vav1 and the Mer Receptor Tyrosine Kinase: A MECHANISM FOR LOCALIZING GUANINE NUCLEOTIDE-EXCHANGE FACTOR ACTION. Journal of Biological Chemistry. 2003;278(43):42596–603. doi: 10.1074/jbc.M305817200 12920122.

20. Tibrewal N, Wu Y, D'mello V, Akakura R, George TC, Varnum B, et al. Autophosphorylation docking site Tyr-867 in Mer receptor tyrosine kinase allows for dissociation of multiple signaling pathways for phagocytosis of apoptotic cells and down-modulation of lipopolysaccharide-inducible NF-kappaB transcriptional activation. Journal of Biological Chemistry. 2008;283(6):3618–27. doi: 10.1074/jbc.M706906200 18039660.

21. Muller WA. Transendothelial migration: unifying principles from the endothelial perspective. Immunological reviews. 2016;273(1):61–75. Epub 3. doi: 10.1111/imr.12443 27558328; PubMed Central PMCID: PMC5090979.

22. Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD, et al. Transcellular diapedesis is initiated by invasive podosomes. Immunity. 2007;26(6):784–97. doi: 10.1016/j.immuni.2007.04.015 17570692; PubMed Central PMCID: PMC2094044.

23. Heemskerk N, Asimuddin M, Oort C, van Rijssel J, van Buul JD. Annexin A2 Limits Neutrophil Transendothelial Migration by Organizing the Spatial Distribution of ICAM-1. Journal of immunology (Baltimore, Md: 1950). 2016;196(6):2767–78. doi: 10.4049/jimmunol.1501322 26864032.

24. Gonzalez AM, Cyrus BF, Muller WA. Targeted Recycling of the Lateral Border Recycling Compartment Precedes Adherens Junction Dissociation during Transendothelial Migration. The American journal of pathology. 2016;186(5):1387–402. doi: 10.1016/j.ajpath.2016.01.010 26968345; PubMed Central PMCID: PMC4861767.

25. van Buul JD, Allingham MJ, Samson T, Meller J, Boulter E, García-Mata R, et al. RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. The Journal of cell biology. 2007;178(7):1279–93. doi: 10.1083/jcb.200612053 17875742; PubMed Central PMCID: PMC2064659.

26. Carman CV, Springer TA. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. The Journal of cell biology. 2004;167(2):377–88. doi: 10.1083/jcb.200404129 15504916; PubMed Central PMCID: PMC2172560.

27. Schaefer A, Hordijk PL. Cell-stiffness-induced mechanosignaling—a key driver of leukocyte transendothelial migration. Journal of Cell Science. 2015;128(13):2221–30. doi: 10.1242/jcs.163055 26092932.

28. Wessel F, Winderlich M, Holm M, Frye M, Rivera-Galdos R, Vockel M, et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nature immunology. 2014;15(3):223–30. doi: 10.1038/ni.2824 24487320.

29. Vestweber D. How leukocytes cross the vascular endothelium. Nature reviews Immunology. 2015;15(11):692–704. doi: 10.1038/nri3908 26471775.

30. Aghajanian A, Wittchen ES, Allingham MJ, Garrett TA, Burridge K. Endothelial cell junctions and the regulation of vascular permeability and leukocyte transmigration. Journal of thrombosis and haemostasis: JTH. 2008;6(9):1453–60. doi: 10.1111/j.1538-7836.2008.03087.x 18647230; PubMed Central PMCID: PMC2868262.

31. Allingham MJ, van Buul JD, Burridge K. ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. Journal of immunology (Baltimore, Md: 1950). 2007;179(6):4053–64. doi: 10.4049/jimmunol.179.6.4053 17785844.

32. Bautch VL. Bone morphogenetic protein and blood vessels: new insights into endothelial cell junction regulation. Current opinion in hematology. 2019;26(3):154–60. doi: 10.1097/MOH.0000000000000492 30855335.

33. Helbing T, Arnold L, Wiltgen G, Hirschbihl E, Gabelmann V, Hornstein A, et al. Endothelial BMP4 Regulates Leukocyte Diapedesis and Promotes Inflammation. Inflammation. 2017;40(6):1862–74. doi: 10.1007/s10753-017-0627-0 28755278.

34. Fernandez-Martin L, Marcos-Ramiro B, Bigarella CL, Graupera M, Cain RJ, Reglero-Real N, et al. Crosstalk between reticular adherens junctions and platelet endothelial cell adhesion molecule-1 regulates endothelial barrier function. Arterioscler Thromb Vasc Biol. 2012;32(8):e90–102. Epub 2012/06/23. doi: 10.1161/ATVBAHA.112.252080 22723439.

35. Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I, Akhmanova A, et al. Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. J Cell Biol. 2012;196(5):641–52. Epub 2012/03/07. doi: 10.1083/jcb.201108120 22391038; PubMed Central PMCID: PMC3307691.

36. Huveneers S, Daemen MJAP, Hordijk PL. Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circulation research. 2015;116(5):895–908. doi: 10.1161/CIRCRESAHA.116.305720 25722443.

37. Ruan G-X, Kazlauskas A. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. The EMBO journal. 2012;31(7):1692–703. doi: 10.1038/emboj.2012.21 22327215; PubMed Central PMCID: PMC3321201.

38. Ruan G-X, Kazlauskas A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. The Journal of biological chemistry. 2013;288(29):21161–72. doi: 10.1074/jbc.M113.474619 23754286; PubMed Central PMCID: PMC3774382.

39. Zhu D, Wang Y, Singh I, Bell RD, Deane R, Zhong Z, et al. Protein S controls hypoxic/ischemic blood-brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. Blood. 2010;115(23):4963–72. doi: 10.1182/blood-2010-01-262386 20348395; PubMed Central PMCID: PMC2890172.

40. Miner JJ, Daniels BP, Shrestha B, Proenca-Modena JL, Lew ED, Lazear HM, et al. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity. Nature medicine. 2015;21(12):1464–72. doi: 10.1038/nm.3974 26523970; PubMed Central PMCID: PMC4674389.

41. Nguyen K-Q, Tsou W-I, Kotenko S, Birge RB. TAM receptors in apoptotic cell clearance, autoimmunity, and cancer. Autoimmunity. 2013;46(5):294–7. doi: 10.3109/08916934.2013.794515 23662598.

42. Fraineau S, Monvoisin A, Clarhaut J, Talbot J, Simonneau C, Kanthou C, et al. The vitamin K-dependent anticoagulant factor, protein S, inhibits multiple VEGF-A-induced angiogenesis events in a Mer- and SHP2-dependent manner. Blood. 2012;120(25):5073–83. doi: 10.1182/blood-2012-05-429183 23065156.

43. Tjwa M, Bellido-Martin L, Lin Y, Lutgens E, Plaisance S, Bono F, et al. Gas6 promotes inflammation by enhancing interactions between endothelial cells, platelets, and leukocytes. Blood. 2008;111(8):4096–105. doi: 10.1182/blood-2007-05-089565 18156494

44. Roggia MF, Ueta T. αvβ5 Integrin/FAK/PGC-1α Pathway Confers Protective Effects on Retinal Pigment Epithelium. PLOS ONE. 2015;10(8):e0134870. doi: 10.1371/journal.pone.0134870 26244551; PubMed Central PMCID: PMC4526642.

45. Gustafsson A, Boström A-K, Ljungberg B, Axelson H, Dahlback B. Gas6 and the receptor tyrosine kinase Axl in clear cell renal cell carcinoma. PLOS ONE. 2009;4(10):e7575. doi: 10.1371/journal.pone.0007575 19888345; PubMed Central PMCID: PMC2766033.

46. Vuoriluoto K, Haugen H, Kiviluoto S, Mpindi J-P, Nevo J, Gjerdrum C, et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene. 2011;30(12):1436–48. doi: 10.1038/onc.2010.509 21057535.

47. Schaefer A, Te Riet J, Ritz K, Hoogenboezem M, Anthony EC, Mul FPJ, et al. Actin-binding proteins differentially regulate endothelial cell stiffness, ICAM-1 function and neutrophil transmigration. Journal of Cell Science. 2014;127(Pt 20):4470–82. doi: 10.1242/jcs.154708 25107367.

48. Schaefer A, van Duijn TJ, Majolee J, Burridge K, Hordijk PL. Endothelial CD2AP Binds the Receptor ICAM-1 To Control Mechanosignaling, Leukocyte Adhesion, and the Route of Leukocyte Diapedesis In Vitro. The Journal of Immunology. 2017;198(12):4823–36. doi: 10.4049/jimmunol.1601987 28484055

49. Dubrovskyi O, Birukova AA, Birukov KG. Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury. Laboratory investigation; a journal of technical methods and pathology. 2013;93(2):254–63. doi: 10.1038/labinvest.2012.159 23212101; PubMed Central PMCID: PMC3668557.

50. Xu W, Wittchen ES, Hoopes SL, Stefanini L, Burridge K, Caron KM. Small GTPase Rap1A/B Is Required for Lymphatic Development and Adrenomedullin-Induced Stabilization of Lymphatic Endothelial Junctions. Arteriosclerosis, Thrombosis, and Vascular Biology. 2018;38(10):2410–22. doi: 10.1161/ATVBAHA.118.311645 30354217; PubMed Central PMCID: PMC6206876.

51. Monvoisin A, Alva JA, Hofmann JJ, Zovein AC, Lane TF, Iruela-Arispe ML. VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Developmental dynamics: an official publication of the American Association of Anatomists. 2006;235(12):3413–22. doi: 10.1002/dvdy.20982 17072878.

52. Gomez JC, Dang H, Martin JR, Doerschuk CM. Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice. Journal of immunology (Baltimore, Md: 1950). 2016;197(7):2864–79. doi: 10.4049/jimmunol.1600043 27566827; PubMed Central PMCID: PMC5026972.

53. Gomez JC, Yamada M, Martin JR, Dang H, Brickey WJ, Bergmeier W, et al. Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumonia. American journal of respiratory cell and molecular biology. 2015;52(3):349–64. doi: 10.1165/rcmb.2013-0316OC 25100610; PubMed Central PMCID: PMC4370257.

54. Engle ML, Monk JN, Jania CM, Martin JR, Gomez JC, Dang H, et al. Dynamic changes in lung responses after single and repeated exposures to cigarette smoke in mice. PLOS ONE. 2019;14(2):e0212866. doi: 10.1371/journal.pone.0212866 30818335; PubMed Central PMCID: PMC6395068.

55. Mammoto A, Mammoto T, Kanapathipillai M, Wing Yung C, Jiang E, Jiang A, et al. Control of lung vascular permeability and endotoxin-induced pulmonary oedema by changes in extracellular matrix mechanics. Nature communications. 2013;4:1759. doi: 10.1038/ncomms2774 23612300.

56. Parikh SM, Mammoto T, Schultz A, Yuan H-T, Christiani D, Karumanchi SA, et al. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS medicine. 2006;3(3):e46. doi: 10.1371/journal.pmed.0030046 16417407; PubMed Central PMCID: PMC1334221.

57. Polacheck WJ, Kutys ML, Yang J, Eyckmans J, Wu Y, Vasavada H, et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature. 2017;552(7684):258–62. doi: 10.1038/nature24998 29160307; PubMed Central PMCID: PMC5730479.

58. Mammoto T, Parikh SM, Mammoto A, Gallagher D, Chan B, Mostoslavsky G, et al. Angiopoietin-1 requires p190 RhoGAP to protect against vascular leakage in vivo. Journal of Biological Chemistry. 2007;282(33):23910–8. doi: 10.1074/jbc.M702169200 17562701.

59. Monaghan-Benson E, Wittchen ES. In vitro analyses of endothelial cell permeability. Methods in molecular biology (Clifton, NJ). 2011;763(Chapter 19):281–90. doi: 10.1007/978-1-61779-191-8_19 21874459.

60. Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. mBio. 2014;5(5):e01476–14. doi: 10.1128/mBio.01476-14 25161189; PubMed Central PMCID: PMC4173776.

61. Timmerman I, Heemskerk N, Kroon J, Schaefer A, van Rijssel J, Hoogenboezem M, et al. A local VE-cadherin and Trio-based signaling complex stabilizes endothelial junctions through Rac1. Journal of Cell Science. 2015;128(16):3041–54. doi: 10.1242/jcs.168674 26116572.

62. Wójciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ. Rho and Rac but not Cdc42 regulate endothelial cell permeability. Journal of Cell Science. 2001;114(Pt 7):1343–55. 11257000.

63. Zagorska A, Traves PG, Lew ED, Dransfield I, Lemke G. Diversification of TAM receptor tyrosine kinase function. Nat Immunol. 2014;15(10):920–8. Epub 2014/09/10. doi: 10.1038/ni.2986 25194421; PubMed Central PMCID: PMC4169336.

64. Duluc L, Wojciak-Stothard B. Rho GTPases in the regulation of pulmonary vascular barrier function. Cell Tissue Res. 2014;355(3):675–85. Epub 2014/03/07. doi: 10.1007/s00441-014-1805-0 24599334.

65. Shao W-H, Zhen Y, Rosenbaum J, Eisenberg RA, McGaha TL, Birkenbach M, et al. A protective role of Mer receptor tyrosine kinase in nephrotoxic serum-induced nephritis. Clinical immunology (Orlando, Fla). 2010;136(2):236–44. doi: 10.1016/j.clim.2010.04.002 20444650; PubMed Central PMCID: PMC2902650.

66. Zhen Y, Finkelman FD, Shao W-H. Mechanism of Mer receptor tyrosine kinase inhibition of glomerular endothelial cell inflammation. Journal of Leukocyte Biology. 2018;103(4):709–17. doi: 10.1002/JLB.3A0917-368R 29350876; PubMed Central PMCID: PMC6150462.

67. Zhen Y, Priest SO, Shao W-H. Opposing Roles of Tyrosine Kinase Receptors Mer and Axl Determine Clinical Outcomes in Experimental Immune-Mediated Nephritis. Journal of immunology (Baltimore, Md: 1950). 2016;197(6):2187–94. doi: 10.4049/jimmunol.1600793 27527599; PubMed Central PMCID: PMC5010948.

68. El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Günther S, Fukuda N, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;14:263. doi: 10.1038/s41586-019-1064-z 30944477.

69. Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 2015;524(7564):230–3. doi: 10.1038/nature14580 26168398.

70. Wagner WW, Jaryszak EM, Peterson AJ, Doerschuk CM, Bohlen HG, King JAC, et al. A perpetual switching system in pulmonary capillaries. Journal of applied physiology (Bethesda, Md: 1985). 2019;126(2):494–501. doi: 10.1152/japplphysiol.00507.2018 30571293; PubMed Central PMCID: PMC6397411.

71. Kovach MA, Singer BH, Newstead MW, Zeng X, Moore TA, White ES, et al. IL-36γ is secreted in microparticles and exosomes by lung macrophages in response to bacteria and bacterial components. Journal of Leukocyte Biology. 2016;100(2):413–21. doi: 10.1189/jlb.4A0315-087R 26864267; PubMed Central PMCID: PMC4945350.

72. Wang J-G, Williams JC, Davis BK, Jacobson K, Doerschuk CM, Ting JP-Y, et al. Monocytic microparticles activate endothelial cells in an IL-1β-dependent manner. Blood. 2011;118(8):2366–74. doi: 10.1182/blood-2011-01-330878 21700772; PubMed Central PMCID: PMC3162361.

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden