Mutation spectrums of TSC1 and TSC2 in Chinese women with lymphangioleiomyomatosis (LAM)


Autoři: Jie Liu aff001;  Weiwei Zhao aff005;  Xiaohua Ou aff006;  Zhen Zhao aff006;  Changming Hu aff006;  Mingming Sun aff006;  Feifei Liu aff006;  Junhao Deng aff006;  Weili Gu aff001;  Jiaying An aff002;  Qingling Zhang aff001;  Xiaoxian Zhang aff001;  Jiaxing Xie aff001;  Shiyue Li aff001;  Rongchang Chen aff009;  Shihui Yu aff005;  Nanshan Zhong aff001
Působiště autorů: Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China aff001;  Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China aff002;  State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China aff003;  National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China aff004;  Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou, Guangdong, China aff005;  Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China aff006;  KingMed College of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China aff007;  Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China aff008;  Department of Pulmonary and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen, Guangdong, China aff009;  KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, Guangdong, China aff010
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226400

Souhrn

The aim of our study was to elucidate the landscapes of genetic alterations of TSC1 and TSC2 as well as other possible non-TSC1/2 in Lymphangioleiomyomatosis (LAM) patients. Sixty-one Chinese LAM patients’ clinical information was collected. Tumor biopsies and matched leukocytes from these patients were retrospectively analyzed by next generation sequencing (NGS), chromosomal microarray analysis (CMA), and multiplex ligation-dependent probe amplification (MLPA). Eighty-six TSC1/2 variants were identified in 46 of the 61 LAM patients (75.4%) in which TSC2 and TSC1 variants were 88.37% and 11.63% respectively. The 86 variants are composed of (i) 52 single nucleotide variants (SNVs) (including 30 novel variants), (ii) 23 indels (including 21deletions, and 2 insertions), (iii) a germline duplication of exon 31–42 of TSC2, (iv) a 2.68 Mb somatic duplication containing TSC2, and (v) 9 regions with copy-neutral loss of heterogeneity (CN-LOHs) present only in the LAM patients with single TSC1/2 mutations. Sixty-one non-TSC1/2 variants in 31 genes were identified in 37 LAM patients. Combined applications of different techniques are necessary to achieve maximal detection rate of TSC1/2 variants in LAM patients. Thirty novel TSC1/2 variants expands the spectrum of TSC1/2 in LAM patients. Identification of 61 non-TSC1/2 variants suggests that alternative genes might have contributed to the initiation and progression of LAM.

Klíčová slova:

Biopsy – Carcinogenesis – Human genetics – Mutation databases – Mutation detection – Nonsense mutation – Somatic mutation – Germline mutation


Zdroje

1. McCormack FX, Gupta N, Finlay GR, Young LR, Taveira-DaSilva AM, Glasgow CG, et al. (2016) Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guidelines: Lymphangioleiomyomatosis Diagnosis and Management. American journal of respiratory and critical care medicine 194 (6): 748–761. doi: 10.1164/rccm.201607-1384ST 27628078

2. Taillé C, Borie R, Crestani B. (2011) Current management of lymphangioleiomyomatosis. Current opinion in pulmonary medicine 17 (5): 374–378. doi: 10.1097/MCP.0b013e328349ac8c 21760507

3. Harari S, Spagnolo P, Cocconcelli E, Luisi F, Cottin V. (2018) Recent advances in the pathobiology and clinical management of lymphangioleiomyomatosis. Current opinion in pulmonary medicine 24 (5): 469–476. doi: 10.1097/MCP.0000000000000502 29927757

4. Gupta N, Finlay GA, Kotloff RM, Strange C, Wilson KC, Young LR, et al. (2017) Lymphangioleiomyomatosis Diagnosis and Management: High-Resolution Chest Computed Tomography, Transbronchial Lung Biopsy, and Pleural Disease Management. An Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guideline. American journal of respiratory and critical care medicine 196 (10): 1337–1348. doi: 10.1164/rccm.201709-1965ST 29140122

5. Avila NA, Dwyer AJ, Rabel A, Moss J. (2007) Sporadic lymphangioleiomyomatosis and tuberous sclerosis complex with lymphangioleiomyomatosis: comparison of CT features. Radiology 242 (1): 277–285. doi: 10.1148/radiol.2421051767 17105849

6. Chang WY, Cane JL, Blakey JD, Kumaran M, Pointon KS, Johnson SR. (2012) Clinical utility of diagnostic guidelines and putative biomarkers in lymphangioleiomyomatosis. Respiratory research 13: 34. doi: 10.1186/1465-9921-13-34 22513045

7. Young LR, Inoue Y, McCormack FX. (2008) Diagnostic potential of serum VEGF-D for lymphangioleiomyomatosis. The New England journal of medicine 358 (2): 199–200. doi: 10.1056/NEJMc0707517 18184970

8. Hodges AK, Li S, Maynard J, Parry L, Braverman R, Cheadle JP, et al. (2001) Pathological mutations in TSC1 and TSC2 disrupt the interaction between hamartin and tuberin. Human molecular genetics 10 (25): 2899–2905. doi: 10.1093/hmg/10.25.2899 11741833

9. van Slegtenhorst M, Nellist M, Nagelkerken B, Cheadle J, Snell R, van den Ouweland A, et al. (1998) Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Human molecular genetics 7 (6): 1053–1057. doi: 10.1093/hmg/7.6.1053 9580671

10. Krencz I, Sebestyen A, Papay J, Jeney A, Hujber Z, Burger CD, et al. (2018) In situ analysis of mTORC1/2 and cellular metabolism-related proteins in human Lymphangioleiomyomatosis. Human pathology 79: 199–207. doi: 10.1016/j.humpath.2018.05.018 29885404

11. Tomlinson IP, Roylance R, Houlston RS. (2001) Two hits revisited again. Journal of medical genetics 38 (2): 81–85. doi: 10.1136/jmg.38.2.81 11158170

12. Knudson AG. (1996) Hereditary cancer: two hits revisited. Journal of cancer research and clinical oncology 122 (3): 135–140. doi: 10.1007/bf01366952 8601560

13. Muzykewicz DA, Sharma A, Muse V, Numis AL, Rajagopal J, Thiele EA. (2009) TSC1 and TSC2 mutations in patients with lymphangioleiomyomatosis and tuberous sclerosis complex. Journal of medical genetics 46 (7): 465–468. doi: 10.1136/jmg.2008.065342 19419980

14. Carsillo T, Astrinidis A, Henske EP. (2000) Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proceedings of the National Academy of Sciences of the United States of America 97 (11): 6085–6090. doi: 10.1073/pnas.97.11.6085 10823953

15. Feemster LC, Lyons PG, Chatterjee RS, Kidambi P, McCormack FX, Moss J, et al. (2017) Summary for Clinicians: Lymphangioleiomyomatosis Diagnosis and Management Clinical Practice Guideline. Annals of the American Thoracic Society 14 (7): 1073–1075. doi: 10.1513/AnnalsATS.201609-685CME 28665705

16. May T. (2015) On the justifiability of ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. The Journal of law, medicine & ethics: a journal of the American Society of Law, Medicine & Ethics 43 (1): 134–142.

17. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. (2013) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genetics in medicine: official journal of the American College of Medical Genetics 15 (7): 565–574.

18. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine: official journal of the American College of Medical Genetics 17 (5): 405–424.

19. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. (2017) Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. The Journal of molecular diagnostics: JMD 19 (1): 4–23. doi: 10.1016/j.jmoldx.2016.10.002 27993330

20. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT. (2011) LOVD v.2.0: the next generation in gene variant databases. Human mutation 32 (5): 557–563. doi: 10.1002/humu.21438 21520333

21. Wang JC, Ross L, Mahon LW, Owen R, Hemmat M, Wang BT, et al. (2015) Regions of homozygosity identified by oligonucleotide SNP arrays: evaluating the incidence and clinical utility. European journal of human genetics: EJHG 23 (5): 663–671. doi: 10.1038/ejhg.2014.153 25118026

22. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST. (2011) American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genetics in medicine: official journal of the American College of Medical Genetics 13 (7): 680–685.

23. Krueger DA, Northrup H. (2013) Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatric neurology 49 (4): 255–265. doi: 10.1016/j.pediatrneurol.2013.08.002 24053983

24. Northrup H, Krueger DA. (2013) Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 Iinternational Tuberous Sclerosis Complex Consensus Conference. Pediatric neurology 49 (4): 243–254. doi: 10.1016/j.pediatrneurol.2013.08.001 24053982

25. Fujita A, Ando K, Kobayashi E, Mitani K, Okudera K, Nakashima M, et al. (2016) Detection of low-prevalence somatic TSC2 mutations in sporadic pulmonary lymphangioleiomyomatosis tissues by deep sequencing. Human genetics 135 (1): 61–68. doi: 10.1007/s00439-015-1611-0 26563443

26. Nellist M, Brouwer RW, Kockx CE, van Veghel-Plandsoen M, Withagen-Hermans C, Prins-Bakker L, et al. (2015) Targeted Next Generation Sequencing reveals previously unidentified TSC1 and TSC2 mutations. BMC medical genetics 16: 10. doi: 10.1186/s12881-015-0155-4 25927202

27. Tyburczy ME1, Dies KA2, Glass J3, Camposano S4, Chekaluk Y1, Thorner AR, et al. (2015) Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing. PLoS genetics 11 (11): e1005637. doi: 10.1371/journal.pgen.1005637 26540169

28. Badri KR, Gao L, Hyjek E, Schuger N, Schuger L, Qin W, et al. (2013) Exonic mutations of TSC2/TSC1 are common but not seen in all sporadic pulmonary lymphangioleiomyomatosis. American journal of respiratory and critical care medicine 187 (6): 663–665. doi: 10.1164/ajrccm.187.6.663 23504366

29. Lam HC, Nijmeh J, Henske EP. (2017) New developments in the genetics and pathogenesis of tumours in tuberous sclerosis complex. The Journal of pathology 241 (2): 219–225. doi: 10.1002/path.4827 27753446

30. Goncharova EA, Goncharov DA, Li H, Pimtong W, Lu S, Khavin I, et al. (2011) mTORC2 is required for proliferation and survival of TSC2-null cells. Molecular and cellular biology 31 (12): 2484–2498. doi: 10.1128/MCB.01061-10 21482669

31. Maze I, Noh K-M, Soshnev AA, Allis CD. (2014) Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nature reviews. Genetics 15 (4): 259–271. doi: 10.1038/nrg3673 24614311

32. Zhou J, Shrikhande G, Xu J, McKay RM, Burns DK, Johnson JE, et al. (2011) Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. Genes & development 25 (15): 1595–1600.

33. Martin KR, Zhou W, Bowman MJ, Shih J, Au KS, Dittenhafer-Reed KE, et al. (2017) The genomic landscape of tuberous sclerosis complex. Nature communications 8: 15816. doi: 10.1038/ncomms15816 28643795

34. Uhlmann EJ, Apicelli AJ, Baldwin RL, Burke SP, Bajenaru ML, Onda H, et al. (2002) Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27-Kip1 expression in TSC2+/- cells. Oncogene 21 (25): 4050–4059. doi: 10.1038/sj.onc.1205435 12037687

35. Sato T, Seyama K, Fujii H, Maruyama H, Setoguchi Y, Iwakami S, et al. (2002) Mutation analysis of the TSC1 and TSC2 genes in Japanese patients with pulmonary lymphangioleiomyomatosis. Journal of human genetics 47 (1): 20–28. doi: 10.1007/s10038-002-8651-8 11829138

36. Au KS, Rodriguez JA, Finch JL, Volcik KA, Roach ES, Delgado MR, et al. (1998) Germ-line mutational analysis of the TSC2 gene in 90 tuberous-sclerosis patients. American journal of human genetics 62 (2): 286–294. doi: 10.1086/301705 9463313

37. Morrison PJ. (2009) Tuberous sclerosis: epidemiology, genetics and progress towards treatment. Neuroepidemiology 33 (4): 342–343. doi: 10.1159/000254570 19887840

38. Urban T. (2000) Epidémiologie clinique et moléculaire de la lymphangioleiomyomatose et de l'atteinte pulmonaire de la sclérose tubéreuse. Revue des maladies respiratoires 17 (2 Pt 2): 597–603.


Článek vyšel v časopise

PLOS One


2019 Číslo 12