Fluid balance correlates with clinical course of multiple organ dysfunction syndrome and mortality in patients with septic shock


Autoři: Allen Chung-Cheng Huang aff001;  Tim Yu-Ting Lee aff002;  Meng-Cheng Ko aff001;  Chih-Hsien Huang aff001;  Tsai-Yu Wang aff001;  Ting-Yu Lin aff001;  Shu-Min Lin aff001
Působiště autorů: Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taipei, Taiwan aff001;  Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taipei, Taiwan aff002;  Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taipei, Taiwan aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225423

Souhrn

Introduction

Positive fluid balance is a prognostic factor for mortality in patients with sepsis; however, the association between cumulated fluid balance (CFB) and sepsis-induced multi-organ dysfunction syndrome (MODS) has yet to be elucidated. In this study, we sought to determine whether CFB is correlated with MODS and mortality in cases of septic shock.

Methods

The study retrospectively recruited patients with septic shock from the intensive care unit of a tertiary care hospital. Multiple organ dysfunction syndrome (MODS) was identified as sequential organ failure assessment (SOFA) score ≥ 2 in more than one organ system. The CFB is the sum of all daily intake and output. An independent t-test, single and multivariate logistic regression, the receiver operating characteristic (ROC) curves, and the Pearson correlation coefficient were used to determine whether a relationship exists between CFB and the development of MODS and mortality.

Results

Among the 104 patients enrolled in the study, 58 (55.8%) survived more than 28 days, and 73 (70.2%) developed MODS on day 3. The values of CFB in the first 24 hours and 72 hours after diagnosis of septic shock in patients with MODS were higher than these in patients without MODS (1086.6 ± 176.3 vs. 325.5 ± 205.7 ml, p = 0.013 and 2408 ± 361 vs. 873.1 ± 489 ml, p < 0.0001). In a multivariate logistic regression, the independent factors associated with the development of MODS on day 3 were APACHE II score at ICU admission (27.6 ± 7.6 in patients with MODS vs. 20.5 ± 6.4 in those without; O.R. 1.18; 95% C.1 I. 1.08–1.30; p < 0.001), disseminated intravascular coagulopathy (DIC) (n = 28; 38.4% vs. n = 2; 6.5%; O.R. 23.67; 95% C.I. 3.58–156.5; p = 0.001), and CFB in the first 72 hours (72-hr CFB) > median (1767.50ml) (n = 41; 56.2% vs. n = 11; 35.5%; O.R. 3.67; 95% C.I., 1.18–11.40; p = 0.024). Moreover, a multivariate logistic regression also identified neoplasm (n = 25; 54.3% vs. n = 17; 29.3%; O.R. 3.45; 95% C.I. 1.23–10.0; p = 0.019) and 72-hr CFB > median (n = 30; 65.2% vs. n = 21; 36.2%; O.R. 4.13; 95% C.I. 1.34–12.66; p = 0.013) as independent factors associated with 28-day mortality. 72-hr CFB values were strongly correlated with the SOFA score (r = 0.445, p < 0.0001). The area under the ROC curve revealed that 72-hr CFB has good discriminative power in associating the development of MODS (0.644, p = 0.002) and predicting subsequent 28-day mortality (0.704, p < 0.0001).

Conclusions

72-hr CFB appears to be correlated with the likelihood of developing MODS and mortality in patients with septic shock. Thus, it appears that 72-hr CFB could perhaps be used as an indicator for MODS and a predictor for mortality in those patients.

Klíčová slova:

Bloodstream infections – Coagulopathy – Death rates – Intensive care units – Respiratory infections – Sepsis – Multiple organ dysfunction syndrome


Zdroje

1. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016;193(3):259–72. Epub 2015/09/29. doi: 10.1164/rccm.201504-0781OC 26414292.

2. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77. doi: 10.1056/NEJMoa010307 11794169.

3. Lin SM, Huang CD, Lin HC, Liu CY, Wang CH, Kuo HP. A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock: a randomized controlled trial. Shock. 2006;26(6):551–7. doi: 10.1097/01.shk.0000232271.09440.8f 17117128.

4. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228. doi: 10.1007/s00134-012-2769-8 23361625.

5. Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study: A global inception cohort study. Intensive Care Med. 2015;41(9):1529–37. doi: 10.1007/s00134-015-3850-x 26162676; PubMed Central PMCID: PMC4550653.

6. Sakr Y, Rubatto Birri PN, Kotfis K, Nanchal R, Shah B, Kluge S, et al. Higher Fluid Balance Increases the Risk of Death From Sepsis. Critical Care Medicine. 2017;45(3):386–94. doi: 10.1097/CCM.0000000000002189 27922878

7. Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19:251. Epub 2015/06/16. doi: 10.1186/s13054-015-0970-1 26073560; PubMed Central PMCID: PMC4479078.

8. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65. Epub 2010/10/27. doi: 10.1097/CCM.0b013e3181feeb15 20975548.

9. Murphy CV, Schramm GE, Doherty JA, Reichley RM, Gajic O, Afessa B, et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009;136(1):102–9. doi: 10.1378/chest.08-2706 19318675.

10. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–53. doi: 10.1097/01.ccm.0000194725.48928.3a 16424713.

11. Sakr Y, Rubatto Birri PN, Kotfis K, Nanchal R, Shah B, Kluge S, et al. Higher Fluid Balance Increases the Risk of Death From Sepsis: Results From a Large International Audit. Crit Care Med. 2017;45(3):386–94. doi: 10.1097/CCM.0000000000002189 27922878.

12. Lin SM, Wang YM, Lin HC, Lee KY, Huang CD, Liu CY, et al. Serum thrombomodulin level relates to the clinical course of disseminated intravascular coagulation, multiorgan dysfunction syndrome, and mortality in patients with sepsis. Crit Care Med. 2008;36(3):683–9. doi: 10.1097/CCM.0B013E31816537D8 18431261.

13. Chung FT, Lin HC, Kuo CH, Yu CT, Chou CL, Lee KY, et al. Extravascular lung water correlates multiorgan dysfunction syndrome and mortality in sepsis. PLoS One. 2010;5(12):e15265. doi: 10.1371/journal.pone.0015265 21187890; PubMed Central PMCID: PMC3002976.

14. Blanco J, Muriel-Bombin A, Sagredo V, Taboada F, Gandia F, Tamayo L, et al. Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study. Crit Care. 2008;12(6):R158. Epub 2008/12/19. doi: 10.1186/cc7157 19091069; PubMed Central PMCID: PMC2646323.

15. Lin SM, Chung FT, Kuo CH, Chou PC, Wang TY, Chang PJ, et al. Circulating angiopopietin-1 correlates with the clinical course of multiple organ dysfunction syndrome and mortality in patients with severe sepsis. Medicine (Baltimore). 2015;94(20):e878. doi: 10.1097/MD.0000000000000878 25997069; PubMed Central PMCID: PMC4602874.

16. Zhang Y, Khalid S, Jiang L. Diagnostic and predictive performance of biomarkers in patients with sepsis in an intensive care unit. J Int Med Res. 2019;47(1):44–58. doi: 10.1177/0300060518793791 30477377; PubMed Central PMCID: PMC6384460.

17. Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care. 2015;19:26. Epub 2015/04/19. doi: 10.1186/s13054-015-0741-z 25887223; PubMed Central PMCID: PMC4308932.

18. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10. Epub 2016/02/24. doi: 10.1001/jama.2016.0287 26903338; PubMed Central PMCID: PMC4968574.

19. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–10. Epub 1996/07/01. doi: 10.1007/bf01709751 8844239.

20. Heyland DK, Muscedere J, Drover J, Jiang X, Day AG, Canadian Critical Care Trials G. Persistent organ dysfunction plus death: a novel, composite outcome measure for critical care trials. Crit Care. 2011;15(2):R98. Epub 2011/03/23. doi: 10.1186/cc10110 21418560; PubMed Central PMCID: PMC3219367.

21. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96. doi: 10.1016/j.jacc.2008.05.068 19215833; PubMed Central PMCID: PMC2856960.

22. van Deursen VM, Damman K, Hillege HL, van Beek AP, van Veldhuisen DJ, Voors AA. Abnormal liver function in relation to hemodynamic profile in heart failure patients. J Card Fail. 2010;16(1):84–90. doi: 10.1016/j.cardfail.2009.08.002 20123323.

23. Vellinga NA, Ince C, Boerma EC. Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiol. 2013;13:17. doi: 10.1186/1471-2253-13-17 23919272; PubMed Central PMCID: PMC3750825.

24. Nieuwdorp M, Meuwese MC, Vink H, Hoekstra JB, Kastelein JJ, Stroes ES. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol. 2005;16(5):507–11. Epub 2005/09/09. doi: 10.1097/01.mol.0000181325.08926.9c 16148534.

25. Wu X, Hu Z, Yuan H, Chen L, Li Y, Zhao C. Fluid Resuscitation and Markers of Glycocalyx Degradation in Severe Sepsis. Open Med (Wars). 2017;12:409–16. Epub 2018/01/11. doi: 10.1515/med-2017-0059 29318186; PubMed Central PMCID: PMC5757348.

26. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94. Epub 2012/02/01. doi: 10.1093/bja/aer515 22290457.

27. Vidal MG, Ruiz Weisser J, Gonzalez F, Toro MA, Loudet C, Balasini C, et al. Incidence and clinical effects of intra-abdominal hypertension in critically ill patients. Crit Care Med. 2008;36(6):1823–31. doi: 10.1097/CCM.0b013e31817c7a4d 18520642.

28. Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med. 1999;341(8):586–92. doi: 10.1056/NEJM199908193410807 10451465.

29. Okabayashi K, Wada H, Ohta S, Shiku H, Nobori T, Maruyama K. Hemostatic markers and the sepsis-related organ failure assessment score in patients with disseminated intravascular coagulation in an intensive care unit. Am J Hematol. 2004;76(3):225–9. doi: 10.1002/ajh.20089 15224356.

30. Wada H, Mori Y, Shimura M, Hiyoyama K, Ioka M, Nakasaki T, et al. Poor outcome in disseminated intravascular coagulation or thrombotic thrombocytopenic purpura patients with severe vascular endothelial cell injuries. Am J Hematol. 1998;58(3):189–94. doi: 10.1002/(sici)1096-8652(199807)58:3<189::aid-ajh5>3.0.co;2-n 9662269.

31. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive care medicine. 2008;34(1):17–60. Epub 2007/12/07. doi: 10.1007/s00134-007-0934-2 18058085; PubMed Central PMCID: PMC2249616.


Článek vyšel v časopise

PLOS One


2019 Číslo 12