Enzymatic production of bioactive peptides from scotta, an exhausted by-product of ricotta cheese processing


Autoři: Stefania Monari aff001;  Maura Ferri aff001;  Claudio Russo aff003;  Barbara Prandi aff004;  Tullia Tedeschi aff004;  Paolo Bellucci aff001;  Angelo Vittorio Zambrini aff005;  Emanuela Donati aff005;  Annalisa Tassoni aff001
Působiště autorů: Department of Biological, Geological, Environmental Science, University of Bologna, Bologna, Italy aff001;  Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Bologna, Italy aff002;  Territorial and Production Systems Sustainability Department, Biotechnologies and Agroindustry Division, BioProducts and BioProcesses, ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Roma, Italy aff003;  Department of Food and Drug, University of Parma, Parma, Italy aff004;  Department of Quality, Innovation, Safety, Environment, Granarolo S.p.A., Bologna, Italy aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226834

Souhrn

The present work reports the enzymatic valorisation of the protein fraction of scotta, a dairy by-product representing the exhausted liquid residue of ricotta production. Scotta was subjected to ultra-filtration with membrane cut-offs from 500 to 4 kDa and the obtained protein-enriched fractions were used for the optimization of enzyme-based digestions aimed at producing potentially bioactive peptides. Nine different commercial proteases were tested and the best digestion conditions were selected based on protein yield, fraction bioactivity and foreseen scale up processing costs. Scale up of the 3% Pancreatin or 5% Papain processes was performed up to 2 L (37°C or 60°C respectively, 1 h incubation), and the digestion efficiency increased with the reaction volume as well as antioxidant activity (up to 60 gBSA eq/L and to 1.7 gAA eq/L). Retentate 1 digested fractions also showed, for the first time in dairy-based peptides, anti-tyrosinase activity, up to 0.14 gKA eq/L. Digested proteins were sub-fractionated by means of physical membrane separations and 30–10 kDa fraction from Papain treatment showed the highest antioxidant and anti-tyrosinase activities. The peptide sequence of the most bioactive fractions was achieved.

Klíčová slova:

Antioxidants – Cysteine – Cysteine proteases – Chymotrypsin – Milk – Proteases – Ultrafiltration – Digestion


Zdroje

1. Pintado ME, Macedo AC, Malcata FX. Review: Technology, chemistry and microbiology of whey cheese. Food Sci Tech Int. 2001;7:105–16.

2. Monti L, Donati E, Zambrini AV, Contarini G. Application of membrane technologies to bovine Ricotta cheese exhausted whey (scotta). Int Dairy J. 2018;85:121–8.

3. Sansonetti S, Curcio S, Calabro V, Iorio G. Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source. Biomass Bioenerg. 2009;33(12):1687–92.

4. Caroli AM, Chessa S, Erhardt GJ. Milk protein polymorphisms in cattle: effect on animal breeding and human nutrition. J Dairy Sci. 2009;92(11):5335–52. doi: 10.3168/jds.2009-2461 19841193

5. Prazeres AR, Carvalho F, Rivas J. Cheese whey management: a review. J Environ Manage. 2012;110:48–68. doi: 10.1016/j.jenvman.2012.05.018 22721610

6. Carvalho F, Prazeres AR, Rivas J. Cheese whey wastewater: characterization and treatment. Sci Total Environ. 2013;445–446:385–96. doi: 10.1016/j.scitotenv.2012.12.038 23376111

7. Colombo B, Sciarria TP, Reis M, Scaglia B, Adani F. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresource Technol. 2016;218:692–9.

8. Zoppellari F, Bardi L. Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus. New Biotech. 2013;30(6):607–13.

9. Secchi N, Giunta D, Pretti L, Garcia MR, Roggio T, Mannazzu I, et al. Bioconversion of ovine scotta into lactic acid with pure and mixed cultures of lactic acid bacteria. J Ind Microbiol Biotech. 2012;39(1):175–81.

10. Maragkoudakis P, Vendramin V, Bovo B, Treu L, Corich V, Giacomini A. Potential use of scotta, the by-product of the ricotta cheese manufacturing process, for the production of fermented drinks. J Dairy Res. 2016;83(1):104–8. doi: 10.1017/S002202991500059X 26608679

11. Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotech. 2007;18(2):163–9. doi: 10.1016/j.copbio.2007.01.013 17292602

12. Samaranayaka AGP, Li-Chan ECY. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. J Funct Foods. 2011;3(4):229–54.

13. Dei Piu L, Tassoni A, Serrazanetti DI, Ferri M, Babini E, Tagliazucchi D, et al. Exploitation of starch industry liquid by-product to produce bioactive peptides from rice hydrolyzed proteins. Food Chem. 2014;155:199–206. doi: 10.1016/j.foodchem.2014.01.055 24594175

14. Ferri M, Graen-Heedfeld J, Bretz K, Guillon F, Michelini E, Calabretta MM, et al. Peptide fractions obtained from rice by-products by means of an environment-friendly process show in vitro health-related bioactivities. Plos One. 2017;12(1):e0170954. doi: 10.1371/journal.pone.0170954 28125712

15. Möller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir J. Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr. 2008;47(4):171–82. doi: 10.1007/s00394-008-0710-2 18506385

16. Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: A review. Peptides. 2010;31(10):1949–56. doi: 10.1016/j.peptides.2010.06.020 20600423

17. Sharma S, Singh R, Rana S. Bioactive peptides: a review. Int J Bioautomation. 2011;15(4):223–50.

18. Agyei D, Danquah MK, Sarethy IP, Pan S. Antioxidative peptides derived from food proteins. In: Rana V, Yadav UCSY, editors. Free radicals in human health and disease. Berlin, Germany: Springer; 2015. p. 417–30.

19. Hernandez-Ledesma B, Davalos A, Bartolome B, Amigo L. Preparation of antioxidant enzymatic hydrolysates from a-lactalbumin and b-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J Agric Food Chem. 2005;53:588–93. doi: 10.1021/jf048626m 15686406

20. Korhonen H, Pihlanto A. Bioactive peptides: production and functionality. Int Dairy J. 2006;16(9):945–60.

21. Madureira AR, Tavares T, Gomes AMP, Pintado ME, Malcata FX. Physiological properties of bioactive peptides obtained from whey proteins. J Dairy Sci. 2010;93(2):437–55. doi: 10.3168/jds.2009-2566 20105516

22. Pihlanto-Leppälä A. Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends Food Sci Technol. 2001;11:347–56.

23. Khan IT, Nadeem M, Imran M, Ullah R, Ajmal M, Jaspal M. Antioxidant properties of milk and dairy products: a comprehensive review of the current knowledge. Lipids Health Dis. 2019;18:41. doi: 10.1186/s12944-019-0969-8 30717735

24. Bose B, Choudhury H, Tandon P, Kumaria S. Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance. J Photochem Photobiol B. 2017;173:686–95. doi: 10.1016/j.jphotobiol.2017.07.010 28743100

25. Ferri M, Rondini G, Calabretta MM, Michelini E, Vallini V, Fava F, et al. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities. New Biotech. 2017;39:51–8.

26. Yu Z, Zeng W. Antioxidant, antibrowning, and cytoprotective activities of Ligustrum robustum (Rxob.) Blume extract. J Food Sci Technol. 2013;78(9):C1354–62.

27. Wang B-S, Chang L-W, Wu H-C, Huang S-L, Chu H-L, Huang M-H. Antioxidant and anti-tyrosinase activity of aqueous extracts of green asparagus. Food Chem. 2011;127:141–6.

28. Schurink M, van Berkel W, Wichers H, Boeriu C. Novel peptides with tyrosinase inhibitory activity. Peptides. 2007;28:485–95. doi: 10.1016/j.peptides.2006.11.023 17241698

29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75. 14907713

30. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5. doi: 10.1038/227680a0 5432063

31. Ferri M, Gianotti A, Tassoni A. Optimisation of assay conditions for the determination of antioxidant capacity and polyphenols in cereal food components. J Food Comp Anal. 2013;30(2):94–101.

32. Cohen S, Michaud D. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal Biochem. 1993;211(2):279–87. doi: 10.1006/abio.1993.1270 8317704

33. Prandi B, Varani M, Faccini A, Lambertini F, Suman M, Leporati A, et al. Species specific marker peptides for meat authenticity assessment: a multispecies quantitative approach applied to Bolognese sauce. Food Control. 2019;97:15–24.

34. Mitsuhashi S. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides. Curr Opin Biotech. 2014;26:38–44. doi: 10.1016/j.copbio.2013.08.020 24679256

35. Krzysciak W. Activity of selected aromatic amino acids in biological systems. Acta Biochim Pol. 2011;58(4):461–6. 22175049

36. van Loon LJC. Leucine as a pharmaconutrient in health and disease. Curr Opin Clin Nutr. 2012;15(1):71–7.

37. Yin J, Ren WK, Yang G, Duan JL, Huang XG, Fang RJ, et al. L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res. 2016;60(1):134–46. doi: 10.1002/mnfr.201500031 25929483

38. Legler G, Mullerplatz CM, Mentgeshettkamp M, Pflieger G, Julich E. On the chemical basis of the lowry protein determination. Anal Biochem. 1985;150(2):278–87. doi: 10.1016/0003-2697(85)90511-1 4091254

39. Woessner J. Handobook of Proteolytic Enzymes. 3rd ed. London, UK: Elsevier Academic Press; 2012.

40. Agyei D, Danquah MK. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv. 2011;29(3):272–7. doi: 10.1016/j.biotechadv.2011.01.001 21238564

41. Hougland JL, Darling J, Flynn S. Protein post-translational modification. In: Villamna FA, editor. Molecular basis of oxidative stress–Chemistry, mechanism, and disease pathogenesis. New Jersey (USA) John Wiley & Sons Inc; 2013. p. 71–92.

42. Chang TS. An updated review of tyrosinase inhibitors. Int J Mol Sci. 2009;10(6):2440–75. doi: 10.3390/ijms10062440 19582213

43. da Silva JDF, Correa APF, Kechinski CP, Brandelli A. Buffalo cheese whey hydrolyzed with Alcalase as an antibrowning agent in minimally processed apple. J Food Sci Technol. 2018;55(9):3731–8. doi: 10.1007/s13197-018-3303-y 30150833

44. Zhang LJ, Carmichael R, Falla TJ. Glutathione analogs with increased antityrosinase activity. J Am Acad Dermatol. 2012;66(4):Ab36–Ab.

45. Matsui R, Honda R, Kanome M, Hagiwara A, Matsuda Y, Togitani T, et al. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem. 2018;245:750–5. doi: 10.1016/j.foodchem.2017.11.119 29287436


Článek vyšel v časopise

PLOS One


2019 Číslo 12