Ex vivo perfusion-based engraftment of genetically engineered cell sensors into transplantable organs


Autoři: Ling-Yee Chin aff001;  Cailah Carroll aff001;  Siavash Raigani aff001;  Danielle M. Detelich aff001;  Shannon N. Tessier aff001;  Gregory R. Wojtkiewicz aff004;  Stephen P. Schmidt aff004;  Ralph Weissleder aff004;  Heidi Yeh aff001;  Korkut Uygun aff001;  Biju Parekkadan aff001
Působiště autorů: Center for Surgery, Innovation, and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America aff001;  Shriners Hospitals for Children, Boston, Massachusetts, United States of America aff002;  Center for Transplant Sciences, Massachusetts General Hospital, Boston, Massachusetts, United States of America aff003;  Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America aff004;  Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America aff005;  Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America aff006
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225222

Souhrn

Cellular rejection of liver transplant allografts remains a concern despite immunosuppressant use. Existing transplant biomarkers are often not sensitive enough to detect acute or chronic rejection at an early enough stage to allow successful clinical intervention. We herein developed a cell-based sensor that can potentially be used for monitoring local events following liver transplantation. Utilizing a machine perfusion system as a platform to engraft the cells into a donor liver, we effectively established the biocompatibility of the biosensor cells and confirmed efficient delivery of cells distributed throughout the organ. This work proves an innovative concept of integrating synthetic reporter cells ex vivo into organs as a transplant-within-a-transplant during functional organ preservation with a vision to use cell biosensors as a broad way to monitor and treat tissue transplants.

Klíčová slova:

Biosensors – Fibroblasts – Genetic engineering – Liver – Liver transplantation – Organ transplantation – Secretion – Transplantation immunology


Zdroje

1. Jadlowiec CC, Taner T. Liver transplantation: Current status and challenges. World J Gastroenterol. 2016;22(18):4438–45. Epub 2016/05/18. doi: 10.3748/wjg.v22.i18.4438 27182155; PubMed Central PMCID: PMC4858627.

2. Ten Brinke A, Martinez-Llordella M, Cools N, Hilkens CMU, van Ham SM, Sawitzki B, et al. Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Front Immunol. 2019;10:181. Epub 2019/03/12. doi: 10.3389/fimmu.2019.00181 30853957; PubMed Central PMCID: PMC6395407.

3. Cai S, Chandraker A. Cell Therapy in Solid Organ Transplantation. Curr Gene Ther. 2019. Epub 2019/06/05. doi: 10.2174/1566523219666190603103840 31161989.

4. Garakani R, Saidi RF. Recent Progress in Cell Therapy in Solid Organ Transplantation. Int J Organ Transplant Med. 2017;8(3):125–31. Epub 2017/09/20. 28924460; PubMed Central PMCID: PMC5592099.

5. Reinders MEJ, van Kooten C, Rabelink TJ, de Fijter JW. Mesenchymal Stromal Cell Therapy for Solid Organ Transplantation. Transplantation. 2018;102(1):35–43. Epub 2017/07/14. doi: 10.1097/TP.0000000000001879 28704335.

6. Roemhild A, Reinke P. Virus-specific T-cell therapy in solid organ transplantation. Transpl Int. 2016;29(5):515–26. Epub 2015/08/19. doi: 10.1111/tri.12659 26284570.

7. Haarer J, Johnson CL, Soeder Y, Dahlke MH. Caveats of mesenchymal stem cell therapy in solid organ transplantation. Transpl Int. 2015;28(1):1–9. Epub 2014/08/02. doi: 10.1111/tri.12415 25082213.

8. Govender L, Pascual M, Golshayan D. Potential and limitations of regulatory T-cell therapy in solid organ transplantation. Expert Rev Clin Immunol. 2014;10(9):1197–212. Epub 2014/07/31. doi: 10.1586/1744666X.2014.943191 25073810.

9. Dahlke MH. Immunomodulative cell therapy after solid organ transplantation: which cell type when? Curr Opin Organ Transplant. 2012;17(1):33. Epub 2012/01/10. doi: 10.1097/MOT.0b013e32834f02de 22227720.

10. Fandrich F. Cell therapy approaches aiming at minimization of immunosuppression in solid organ transplantation. Curr Opin Organ Transplant. 2010;15(6):703–8. Epub 2010/10/12. doi: 10.1097/MOT.0b013e328340669a 20930635.

11. Hoogduijn MJ, Popp FC, Grohnert A, Crop MJ, van Rhijn M, Rowshani AT, et al. Advancement of mesenchymal stem cell therapy in solid organ transplantation (MISOT). Transplantation. 2010;90(2):124–6. Epub 2010/07/08. doi: 10.1097/TP.0b013e3181ea4240 20606604.

12. Sprangers B, DeWolf S, Savage TM, Morokata T, Obradovic A, LoCascio SA, et al. Origin of Enriched Regulatory T Cells in Patients Receiving Combined Kidney-Bone Marrow Transplantation to Induce Transplantation Tolerance. Am J Transplant. 2017;17(8):2020–32. Epub 2017/03/03. doi: 10.1111/ajt.14251 28251801; PubMed Central PMCID: PMC5519438.

13. Sasaki H, Oura T, Spitzer TR, Chen YB, Madsen JC, Allan J, et al. Preclinical and clinical studies for transplant tolerance via the mixed chimerism approach. Hum Immunol. 2018;79(5):258–65. Epub 2017/11/28. doi: 10.1016/j.humimm.2017.11.008 29175110; PubMed Central PMCID: PMC5963722.

14. Slomovic S, Pardee K, Collins JJ. Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci U S A. 2015;112(47):14429–35. Epub 2015/11/26. doi: 10.1073/pnas.1508521112 26598662; PubMed Central PMCID: PMC4664311.

15. Reinders ME, Hoogduijn MJ. NK Cells and MSCs: Possible Implications for MSC Therapy in Renal Transplantation. J Stem Cell Res Ther. 2014;4(2):1000166. Epub 2014/06/06. doi: 10.4172/2157-7633.1000166 24900946; PubMed Central PMCID: PMC4040539.

16. Ichim TE, O'Heeron P, Kesari S. Fibroblasts as a practical alternative to mesenchymal stem cells. J Transl Med. 2018;16(1):212. Epub 2018/07/29. doi: 10.1186/s12967-018-1536-1 30053821; PubMed Central PMCID: PMC6064181.

17. Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther. 2005;11(3):435–43. doi: 10.1016/j.ymthe.2004.10.016 15727940.

18. Elman JS, Murray RC, Wang F, Shen K, Gao S, Conway KE, et al. Pharmacokinetics of natural and engineered secreted factors delivered by mesenchymal stromal cells. PLoS One. 2014;9(2):e89882. Epub 2014/03/04. doi: 10.1371/journal.pone.0089882 24587097; PubMed Central PMCID: PMC3931832.

19. Singleton A, Khong D, Chin LY, Mukundan S, Li M, Parekkadan B. An engineered biomarker system to monitor and modulate immune clearance of cell therapies. Cytotherapy. 2017;19(12):1537–45. Epub 2017/09/18. doi: 10.1016/j.jcyt.2017.08.003 28917628; PubMed Central PMCID: PMC5723229.

20. Karimian N, Yeh H. Opportunities for Therapeutic Intervention During Machine Perfusion. Curr Transplant Rep. 2017;4(2):141–8. Epub 2017/11/08. doi: 10.1007/s40472-017-0144-y 29109929; PubMed Central PMCID: PMC5669266.

21. Tannous BA. Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat Protoc. 2009;4(4):582–91. doi: 10.1038/nprot.2009.28 19373229; PubMed Central PMCID: PMC2692611.

22. Lin P, Lin Y, Lennon DP, Correa D, Schluchter M, Caplan AI. Efficient lentiviral transduction of human mesenchymal stem cells that preserves proliferation and differentiation capabilities. Stem Cells Transl Med. 2012;1(12):886–97. Epub 2013/01/04. doi: 10.5966/sctm.2012-0086 23283550; PubMed Central PMCID: PMC3659678.

23. Delriviere L, Gibbs P, Kobayashi E, Goto S, Kamada N, Gianello P. Detailed modified technique for safer harvesting and preparation of liver graft in the rat. Microsurgery. 1996;17(12):690–6. Epub 1996/01/01. doi: 10.1002/(SICI)1098-2752(1996)17:12<690::AID-MICR6>3.0.CO;2-R 9588714.

24. Tolboom H, Pouw R, Uygun K, Tanimura Y, Izamis ML, Berthiaume F, et al. A model for normothermic preservation of the rat liver. Tissue Eng. 2007;13(8):2143–51. Epub 2007/06/29. doi: 10.1089/ten.2007.0101 17596120.

25. Berendsen TA, Bruinsma BG, Lee J, D'Andrea V, Liu Q, Izamis ML, et al. A simplified subnormothermic machine perfusion system restores ischemically damaged liver grafts in a rat model of orthotopic liver transplantation. Transplant Res. 2012;1(1):6. Epub 2013/02/02. doi: 10.1186/2047-1440-1-6 23369351; PubMed Central PMCID: PMC3552573.

26. Wurdinger T, Badr C, Pike L, de Kleine R, Weissleder R, Breakefield XO, et al. A secreted luciferase for ex vivo monitoring of in vivo processes. Nat Methods. 2008;5(2):171–3. Epub 2008/01/22. doi: 10.1038/nmeth.1177 18204457; PubMed Central PMCID: PMC2699561.

27. Teng J, Hejazi S, Badr CE, Tannous BA. Systemic anticancer neural stem cells in combination with a cardiac glycoside for glioblastoma therapy. Stem Cells. 2014;32(8):2021–32. Epub 2014/05/08. doi: 10.1002/stem.1727 24801379.

28. Schofield ZV, Woodruff TM, Halai R, Wu MC, Cooper MA. Neutrophils—a key component of ischemia-reperfusion injury. Shock. 2013;40(6):463–70. Epub 2013/10/04. doi: 10.1097/SHK.0000000000000044 24088997.

29. Mergental H, Stephenson BTF, Laing RW, Kirkham AJ, Neil DAH, Wallace LL, et al. Development of Clinical Criteria for Functional Assessment to Predict Primary Nonfunction of High-Risk Livers Using Normothermic Machine Perfusion. Liver Transpl. 2018;24(10):1453–69. Epub 2018/10/26. doi: 10.1002/lt.25291 30359490; PubMed Central PMCID: PMC6659387.

30. Imber CJ, St Peter SD, Lopez de Cenarruzabeitia I, Pigott D, James T, Taylor R, et al. Advantages of normothermic perfusion over cold storage in liver preservation. Transplantation. 2002;73(5):701–9. Epub 2002/03/22. doi: 10.1097/00007890-200203150-00008 11907414.

31. Uygun K, Tolboom H, Izamis ML, Uygun B, Sharma N, Yagi H, et al. Diluted blood reperfusion as a model for transplantation of ischemic rat livers: alanine aminotransferase is a direct indicator of viability. Transplant Proc. 2010;42(7):2463–7. Epub 2010/09/14. doi: 10.1016/j.transproceed.2010.04.037 20832525; PubMed Central PMCID: PMC3020900.

32. Nasralla D, Coussios CC, Mergental H, Akhtar MZ, Butler AJ, Ceresa CDL, et al. A randomized trial of normothermic preservation in liver transplantation. Nature. 2018;557(7703):50–6. Epub 2018/04/20. doi: 10.1038/s41586-018-0047-9 29670285

33. Trounson A, McDonald C. Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell. 2015;17(1):11–22. Epub 2015/07/04. doi: 10.1016/j.stem.2015.06.007 26140604.

34. Petrou P, Gothelf Y, Argov Z, Gotkine M, Levy YS, Kassis I, et al. Safety and Clinical Effects of Mesenchymal Stem Cells Secreting Neurotrophic Factor Transplantation in Patients With Amyotrophic Lateral Sclerosis: Results of Phase 1/2 and 2a Clinical Trials. JAMA Neurol. 2016;73(3):337–44. Epub 2016/01/12. doi: 10.1001/jamaneurol.2015.4321 26751635.

35. Brasile L, Henry N, Orlando G, Stubenitsky B. Potentiating Renal Regeneration Using Mesenchymal Stem Cells. Transplantation. 2019;103(2):307–13. Epub 2018/09/21. doi: 10.1097/TP.0000000000002455 30234788; PubMed Central PMCID: PMC6347512.

36. Gruttadauria S, Vasta F, Mandala L, Cintorino D, Piazza T, Spada M, et al. Basiliximab in a triple-drug regimen with tacrolimus and steroids in liver transplantation. Transplant Proc. 2005;37(6):2611–3. Epub 2005/09/27. doi: 10.1016/j.transproceed.2005.06.063 16182762.

37. Maluf DG, Stravitz RT, Cotterell AH, Posner MP, Nakatsuka M, Sterling RK, et al. Adult living donor versus deceased donor liver transplantation: a 6-year single center experience. Am J Transplant. 2005;5(1):149–56. Epub 2005/01/08. doi: 10.1111/j.1600-6143.2004.00654.x 15636624.

38. Germani G, Rodriguez-Castro K, Russo FP, Senzolo M, Zanetto A, Ferrarese A, et al. Markers of acute rejection and graft acceptance in liver transplantation. World J Gastroenterol. 2015;21(4):1061–8. Epub 2015/01/30. doi: 10.3748/wjg.v21.i4.1061 25632178; PubMed Central PMCID: PMC4306149.

39. Verhelst XP, Troisi RI, Colle I, Geerts A, van Vlierberghe H. Biomarkers for the diagnosis of acute cellular rejection in liver transplant recipients: A review. Hepatol Res. 2013;43(2):165–78. Epub 2012/11/29. doi: 10.1111/hepr.12012 23186289


Článek vyšel v časopise

PLOS One


2019 Číslo 12