Antibiotic saving effect of combination therapy through synergistic interactions between well-characterized chito-oligosaccharides and commercial antifungals against medically relevant yeasts

Autoři: Monica Ganan aff001;  Silje B. Lorentzen aff001;  Berit B. Aam aff001;  Vincent G. H. Eijsink aff001;  Peter Gaustad aff002;  Morten Sørlie aff001
Působiště autorů: Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Aas, Norway aff001;  Institute of Clinical Medicine, Department of Microbiology, University of Oslo, Blindern, Oslo, Norway aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


Combination therapies can be a help to overcome resistance to current antifungals in humans. The combined activity of commercial antifungals and soluble and well-defined low molecular weight chitosan with average degrees of polymerization (DPn) of 17–62 (abbreviated C17 –C62) and fraction of acetylation (FA) of 0.15 against medically relevant yeast strains was studied. The minimal inhibitory concentration (MIC) of C32 varied greatly among strains, ranging from > 5000 μg mL-1 (Candida albicans and C. glabrata) to < 4.9 (C. tropicalis). A synergistic effect was observed between C32 and the different antifungals tested for most of the strains. Testing of several CHOS preparations indicated that the highest synergistic effects are obtained for fractions with a DPn in the 30–50 range. Pre-exposure to C32 enhanced the antifungal effect of fluconazole and amphotericin B. A concentration-dependent post-antifungal effect conserved even 24 h after C32 removal was observed. The combination of C32 and commercial antifungals together or as part of a sequential therapy opens new therapeutic perspectives for treating yeast infections in humans.

Klíčová slova:

Amphotericin – Antifungals – Antimicrobial resistance – Candida – Candida albicans – Cell membranes – Yeast – Polymerization


1. Roling EE, Klepser ME, Wasson A, Lewis RE, Ernst EJ, Pfaller MA. Antifungal activities of fluconazole, caspofungin (MK0991), and anidulafungin (LY 303366) alone and in combination against Candida spp. and Crytococcus neoformans via time-kill methods. Diagn Microbiol Infect Dis. 2002;43(1):13–7. doi: 10.1016/s0732-8893(02)00361-9 12052624

2. Louie A, Kaw P, Banerjee P, Liu W, Chen G, Miller MH. Impact of the order of initiation of fluconazole and amphotericin B in sequential or combination therapy on killing of Candida albicans in vitro and in a rabbit model of endocarditis and pyelonephritis. Antimicrob Agents Chemother. 2001;45(2):485–94. Epub 2001/02/13. doi: 10.1128/AAC.45.2.485-494.2001 11158745; PubMed Central PMCID: PMC90317.

3. Baddley J, Poppas P. Antifungal Combination Therapy. Drugs. 2005;65(11):1461–80. doi: 10.2165/00003495-200565110-00002 16033288

4. Uppuluri P, Nett J, Heitman J, Andes D. Synergistic Effect of Calcineurin Inhibitors and Fluconazole against Candida albicans Biofilms. Antimicrob Agents Chemother. 2008;52(3):1127–32. doi: 10.1128/AAC.01397-07 18180354

5. Healey KR, Perlin DS. Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata. J Fungi. 2018;4(3):105. doi: 10.3390/jof4030105 30200517.

6. Ben-Ami R. Treatment of Invasive Candidiasis: A Narrative Review. J Fungi. 2018;4(3):97. doi: 10.3390/jof4030097 30115843.

7. Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect. 2019;25(7):792–8. doi: 10.1016/j.cmi.2019.03.028 30965100

8. Beer KD, Farnon EC, Jain S, Jamerson C, Lineberger S, Miller J, et al. Multidrug-Resistant Aspergillus fumigatus Carrying Mutations Linked to Environmental Fungicide Exposure—Three States, 2010–2017. MMWR. 2018;67(38):1064–7. doi: 10.15585/mmwr.mm6738a5 30260939.

9. Verweij PE, Chowdhary A, Melchers WJG, Meis JF. Azole Resistance in Aspergillus fumigatus: Can We Retain the Clinical Use of Mold-Active Antifungal Azoles? Clin infect Dis. 2016;62(3):362–8. Epub 2015/10/20. doi: 10.1093/cid/civ885 26486705.

10. Baddley JW, Stroud TP, Salzman D, Pappas PG. Invasive mold infections in allogeneic bone marrow transplant recipients. Clin Infect Dis. 2001;32(9):1319–24. Epub 2001/04/17. CID000656 [pii] doi: 10.1086/319985 11303267.

11. Cortez KJ, Roilides E, Quiroz-Telles F, Meletiadis J, Antachopoulos C, Knudsen T, et al. Infections Caused by Scedosporium spp. Clinical Microbiology Reviews. 2008;21(1):157–97. doi: 10.1128/CMR.00039-07 18202441

12. Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VGH. Production of chitooligosaccharides and their potential applications in medicine. Marine Drugs. 2010;8:1482–517. doi: 10.3390/md8051482 20559485

13. Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci. 2006;31(7):603–32.

14. Singh K, Tiwary AK, Rana V. Spray dried chitosan-EDTA superior microparticles as solid substrate for the oral delivery of amphotericin B. International Journal of Biological Macromolecules. 2013;58:310–9. doi: 10.1016/j.ijbiomac.2013.04.053 23624284

15. Tiyaboonchai W, Limpeanchob N. Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles. Int J Pharm. 2007;329(1–2):142–9. Epub 2006/09/27. S0378-5173(06)00660-0 [pii] doi: 10.1016/j.ijpharm.2006.08.013 17000065.

16. Gratieri T, Gelfuso GM, de Freitas O, Rocha EM, Lopez RF. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm. 2011;79(2):320–7. Epub 2011/06/07. S0939-6411(11)00166-4 [pii] doi: 10.1016/j.ejpb.2011.05.006 21641994.

17. Yehia SA, El-Gazayerly ON, Basalious EB. Fluconazole mucoadhesive buccal films: in vitro/in vivo performance. Curr Drug Deliv. 2009;6(1):17–27. Epub 2009/05/08. doi: 10.2174/156720109787048195 19418952.

18. Alburquenque C, Bucarey SA, Neira-Carrillo A, Urzua B, Hermosilla G, Tapia CV. Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp. Medical mycology. 2010;48(8):1018–23. Epub 2010/05/21. doi: 10.3109/13693786.2010.486412 20482450.

19. Martinez LR, Mihu MR, Tar M, Cordero RJ, Han G, Friedman AJ, et al. Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model. J Infect Dis. 2010;201(9):1436–40. Epub 2010/03/25. doi: 10.1086/651558 20331379.

20. Palmeira-de-Oliveira A, Ribeiro MP, Palmeira-de-Oliveira R, Gaspar C, Costa-de-Oliveira S, Correia IJ, et al. Anti-Candida activity of a chitosan hydrogel: mechanism of action and cytotoxicity profile. Gynecol Obstet Invest. 2010;70(4):322–7. Epub 2010/11/27. 000314023 [pii] doi: 10.1159/000314023 21109742.

21. Ganan M, Lorentzen SB, Agger JW, Heyward CA, Bakke O, Knutsen SH, et al. Antifungal activity of well-defined chito-oligosaccharide preparations against medically relevant yeasts. PLOS ONE. 2019;14(1):e0210208. doi: 10.1371/journal.pone.0210208 30620751

22. Rahman MH, Shovan LR, Hjeljord LG, Aam BB, Eijsink VGH, Sørlie M, et al. Inhibition of Fungal Plant Pathogens by Synergistic Action of Chito-Oligosaccharides and Commercially Available Fungicides. Plos One. 2014;9(4):10. doi: 10.1371/journal.pone.0093192 WOS:000336736600002. 24770723

23. Sørbotten A, Horn SJ, Eijsink VGH, Vårum KM. Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-oligosaccharides and insight into enzyme processivity. Febs J. 2005;272(2):538–49. doi: 10.1111/j.1742-4658.2004.04495.x 15654891

24. White RL, Burgess DS, Manduru M, Bosso JA. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother. 1996;40(8):1914–8. 8843303

25. Park Y, Kim MH, Park SC, Cheong H, Jang MK, Nah JW, et al. Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. Journal of microbiology and biotechnology. 2008;18(10):1729–34. Epub 2008/10/29. 18955827.

26. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457–65. Epub 2003/11/11. doi: 10.1021/bm034130m 14606868.

27. Jaime MDLA, Lopez-Llorca LV, Conesa A, Lee AY, Proctor M, Heisler LE, et al. Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics. BMC Genomics. 2012;13: 267. doi: 10.1186/1471-2164-13-267 22727066

28. Lamb DC, Kelly DE, Schunck W-H, Shyadehi AZ, Akhtar M, Lowe DJ, et al. The Mutation T315A in Candida albicans Sterol 14α-Demethylase Causes Reduced Enzyme Activity and Fluconazole Resistance through Reduced Affinity. J Biol Chem. 1997;ß(9):5682–8. doi: 10.1074/jbc.272.9.5682 9038178

29. Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother. 2000;46(2):171–9. Epub 2000/08/10. doi: 10.1093/jac/46.2.171 10933638.

30. HR W. Mechanism of action of antieukaryotic and antiviral compounds. G D., SP D., editors. New York: Springer; 1979.

31. Palmeira-de-Oliveira A, Ribeiro MP, Palmeira-de-Oliveira R, Gaspar C, Costa-de-Oliveira S, Correia IJ, et al. Anti-Candida activity of a chitosan hydrogel: mechanism of action and cytotoxicity profile. Gynecologic and Obstetric Investigation. 2010;70(4):322–7. doi: 10.1159/000314023 21109742

32. Calamari SE, Bojanich MA, Barembaum SR, Berdicevski N, Azcurra AI. Antifungal and post-antifungal effects of chlorhexidine, fluconazole, chitosan and its combinations on Candida albicans. Medicina oral, patologia oral y cirugia bucal. 2011;16(1):e23–8. Epub 2010/08/17. doi: 10.4317/medoral.16.e23 20711160.

33. Senel S, Ikinci G, Kas S, Yousefi-Rad A, Sargon MF, Hincal AA. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int J Pharm. 2000;193(2):197–203. Epub 1999/12/22. S0378-5173(99)00334-8 [pii]. doi: 10.1016/s0378-5173(99)00334-8 10606782.

34. El-Sharif AA, Hussain MH. Chitosan-EDTA new combination is a promising candidate for treatment of bacterial and fungal infections. Curr Microbiol. 2010;62(3):739–45. Epub 2010/10/22. doi: 10.1007/s00284-010-9777-0 20963418.

35. Kontoyiannis DP, Lewis RE. Combination chemotherapy for invasive fungal infections: what laboratory and clinical studies tell us so far. Drug Resist Updates. 2003;6(5):257–69.

36. Ernst EJ, Klepser ME, Pfaller MA. Postantifungal effects of echinocandin, azole, and polyene antifungal agents against Candida albicans and Cryptococcus neoformans. Antimicrob Agents Chemother. 2000;44(4):1108–11. Epub 2000/03/18. doi: 10.1128/aac.44.4.1108-1111.2000 10722525; PubMed Central PMCID: PMC89826.

37. D'Arrigo M, Ginestra G, Mandalari G, Furneri PM, Bisignano G. Synergism and postantibiotic effect of tobramycin and Melaleuca alternifolia (tea tree) oil against Staphylococcus aureus and Escherichia coli. Phytomed. 2010;17(5):317–22. Epub 2009/08/25. S0944-7113(09)00193-7 [pii] doi: 10.1016/j.phymed.2009.07.008 19699074.

38. MacKenzie FM, Gould IM. The post-antibiotic effect. J Antimicrob Chemother. 1993;32(4):519–37. doi: 10.1093/jac/32.4.519 8288494

39. Wang Y, Zhang Q, Zhang C-l, Li P. Characterisation and cooperative antimicrobial properties of chitosan/nano-ZnO composite nanofibrous membranes. Food Chem. 2012;132(1):419–27. doi: 10.1016/j.foodchem.2011.11.015 26434310

40. Manavathu EK, Ramesh MS, Baskaran I, Ganesan LT, Chandrasekar PH. A comparative study of the post-antifungal effect (PAFE) of amphotericin B, triazoles and echinocandins on Aspergillus fumigatus and Candida albicans. J Antimicrob Chemother. 2004;53(2):386–9. Epub 2004/01/20. doi: 10.1093/jac/dkh066 dkh066 [pii]. 14729762.

41. Egusa H, Ellepola AN, Nikawa H, Hamada T, Samaranayake LP. Sub-therapeutic exposure to polyene antimycotics elicits a post-antifungal effect (PAFE) and depresses the cell surface hydrophobicity of oral Candida albicans isolates. J Oral Pathol Med. 2000;29(5):206–13. Epub 2000/05/09. doi: 10.1034/j.1600-0714.2000.290503.x 10801037.

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden