Variation in neophobia among cliff swallows at different colonies


Autoři: Stacey L. Hannebaum aff001;  Gigi S. Wagnon aff001;  Charles R. Brown aff001
Působiště autorů: Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226886

Souhrn

Animal groups often represent nonrandom subsets of individuals, and increasing evidence indicates that individuals may sort among groups based on their personalities. The size of a group can predict its personality composition in some species due to differential suitability of a personality for groups of certain sizes, and the group itself may function more effectively if particular personality types are present. We quantified cliff swallow (Petrochelidon pyrrhonota) behavioral measures using linear and generalized linear mixed models to identify whether they: (1) varied among individuals within colonies and among colonies, (2) were related to reproductive success, and (3) predicted levels of parental care. Significant among-individual and among-colony site variation in a cliff swallow’s latency to enter its nest when presented with a novel stimulus was revealed. We also found significant among-individual variation in the number of attacks directed toward a novel stimulus at the nest and in the response to broadcast of a cliff swallow alarm call recording, but among site variation in these measures was not significant. We did not find evidence for behavioral syndromes linking the personalities measured. Differences among individuals in latency to enter the nest and the number of attacks were not significantly related to reproductive success or to the extent to which birds fed their nestlings. However, extent of nestling feeding was significantly predicted by the number of mist net captures. The limited evidence in general of systematic variation in the behavior we measured among cliff swallow colonies may reflect the different and sometimes opposing selection pressures on behavior in different social environments. Future work should perhaps examine variation in other behavioral traits, such as foraging, in cliff swallow colonies of different sizes.

Klíčová slova:

Animal behavior – Behavior – Birds – Collective animal behavior – Nesting habits – Personality – Personality differences – Reproductive success


Zdroje

1. Bolnick D, Svanback R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, et al. The ecology of individuals: incidence and implications of individual specialization. Am Nat. 2003;161: 1–28. doi: 10.1086/343878 12650459

2. Farine DR, Montiglio PO, Spiegel O. From individuals to groups and back: the evolutionary implications of group phenotypic composition. Trends Ecol Evol. 2015;30: 609–621. doi: 10.1016/j.tree.2015.07.005 26411618

3. Brown CR. The ecology and evolution of colony-size variation. Behav Ecol Sociobiol. 2016;70: 1613–1632.

4. Dall SRX, Houston AI, McNamara JM. The behavioral ecology of personality: consistent individual differences from an adaptive perspective. Ecol Lett. 2004;7: 734–739.

5. Sih A, Bell A, Johnson JC, Ziemba RE. Behavioral syndromes: an integrative overview. Q Rev Biol. 2004;79: 241–277. doi: 10.1086/422893 15529965

6. Pruitt JN, Reichart SE. How within-group behavioral variation and task efficiency enhance fitness in a social group. Proc R Soc Lond B Biol Sci. 2011;278: 1209–1215.

7. Dall SR, Bell AM, Bolnick DI, Ratnieks FL. An evolutionary ecology of individual differences. Ecol Lett. 2012;15: 1189–1198. doi: 10.1111/j.1461-0248.2012.01846.x 22897772

8. Pruitt JA, Grinsted L, Settepani V. Linking levels of personality: personalities of the ‘average’ and most ‘extreme’ group members predict colony-level personality. Anim Behav. 2013;86: 391–399.

9. Bengston SE, Jandt JM. The development of collective personality: the ontogenetic drivers of behavioral variation across groups. Front Ecol Evol. 2014;10: 2:art81.

10. Herbert-Read JE. Social behavior: the personalities of groups. Curr Biol. 2017;27: R1015–R1017. doi: 10.1016/j.cub.2017.07.042 28950084

11. Pruitt JN, Iturralde G, Avilés L, Riechart SE. Amazonian social spiders share similar within-colony behavioural variation and behavioural syndromes. Anim Behav. 2011;82: 1449–1455.

12. Dardenne S, Ducatez S, Cote J, Poncin P, Stevens VM. Neophobia and social tolerance are related to breeding group size in a semi-colonial bird. Behav Ecol Sociobiol. 2013;67: 1317–1327.

13. Liker A, Bokony V. Larger groups are more successful in innovative problem solving in house sparrows. Proc Natl Acad Sci U S A. 2009;106: 7893–7898. doi: 10.1073/pnas.0900042106 19416834

14. Roche EA, Brown CR. Among-individual variation in vigilance at the nest in colonial cliff swallows. Wilson J Ornithol. 2013;125: 685–894.

15. Brown CR., Brown MB. Heritable basis for choice of group size in a colonial bird. Proc Natl Acad Sci U S A. 2000;97: 14825–14830. doi: 10.1073/pnas.97.26.14825 11121081

16. Møller AP. Parent-offspring resemblance in degree of sociality in a passerine bird. Behav Ecol Sociobiol. 2002;51: 276–281.

17. Keiser CN, Pruitt JN. Personality composition is more important than group size in determining collective foraging behavior in the wild. Proc R Soc Lond B Biol Sci. 2014;281: 20141424.

18. Wright CM, Keiser CN, Pruitt JN. Colony personality composition alters colony-level plasticity and magnitude of defensive behavior in a social spider. Anim Behav. 2016;115: 175–183.

19. Pinter-Wollman N, Mi B, Pruitt JN. Replacing bold individuals has a smaller impact on group performance than replacing shy individuals. Behav Ecol. 2017;28: 883–889.

20. Brown CR, Stutchbury BJ, Walsh PD. Choice of colony size in birds. Trends Ecol Evol. 1990;5: 398–403. doi: 10.1016/0169-5347(90)90023-7 21232400

21. Wilson DS, Clark AB, Coleman K, Dearstyne T. Shyness and boldness in humans and other animals. Trends Ecol Evol. 1994;9: 442–446.

22. Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ. Integrating animal temperament within ecology and evolution. Biol Rev. 2007;82: 291–318. doi: 10.1111/j.1469-185X.2007.00010.x 17437562

23. Hamilton WD. Geometry for the selfish herd. J Theor Biol. 1971;31: 295–311. doi: 10.1016/0022-5193(71)90189-5 5104951

24. Alexander RD. The evolution of social behavior. Annu Rev Ecol Syst. 1974;5: 325–383.

25. Pulliam HR, Millikan GC. Social organization in the non-reproductive season. In: Farmer DS, King JR, Parkes KC, editors. Avian Biology. Vol. 6. New York: Academic Press; 1982. pp. 169–197.

26. Elgar MA. Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. Biol Rev. 1989;64: 13–33. doi: 10.1111/j.1469-185x.1989.tb00636.x 2655726

27. Brown CR, Brown MB. Avian coloniality: progress and problems. Curr Ornithol. 2001;16: 1–82.

28. Treisman M. Predation and the evolution of gregariousness. II. An economic model for predator-prey interactions. Anim Behav. 1975;23: 801–825.

29. Beauchamp G. Determinants of false alarms in staging flocks of semipalmated sandpipers. Behav Ecol. 2010;21: 584–587.

30. Beauchamp G, Ruxton GD. False alarms and the evolution of antipredator vigilance. Anim Behav. 2007;75: 1199–1206.

31. Pollard KA. Making the most of alarm signals: the adaptive value of individual discrimination in an alarm context. Behav Ecol. 2011;22: 93–100.

32. DuRant SE, Hopkins WA, Hepp GR, Walters JR. Ecological, evolutionary, and conservation implications of incubation temperature-dependent phenotypes in birds. Biol Rev. 2013;88: 499–509. doi: 10.1111/brv.12015 23368773

33. Sheppe W. Exploration by the deermouse, Peromyscus leucopus. Am Midl Nat. 1966;76: 257–276.

34. Greenburg R, Mettke-Hofmann C. Ecological aspects of neophobia and neophilia in birds. Curr Ornithol. 2001;16: 119–178.50 Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67: 1–48.

35. Harris CE, Knowlton FF. Differential responses of coyotes to novel stimuli in familiar and unfamiliar settings. Can J Zool. 2001;79: 2005–2013.

36. Brown CR, Brown MB, Roche EA. Spatial and temporal unpredictability of colony size in cliff swallows across 30 years. Ecol Monogr. 2013;83: 511–530.

37. Brown CR, Brown MB. Coloniality in the cliff swallow: the effect of group size on social behavior. Chicago: University of Chicago Press; 1996.

38. Brown CR, Brown MB. Testis size increases with colony size in cliff swallows. Behav Ecol. 2003;14: 569–575.

39. Brown CR, Brown MB, Raouf SA, Smith LC, Wingfield JC. Steroid hormone levels are related to choice of colony size in cliff swallows. Ecol. 2005;86: 2904–2915.

40. Smith LC, Raouf SA, Brown MB, Wingfield JC, Brown CR. Testosterone and group size in cliff swallows: testing the “challenge hypothesis” in a colonial bird. Horm Behav. 2005;47: 76–82. doi: 10.1016/j.yhbeh.2004.08.012 15579268

41. Brown CR, Roche EA, Brown MB. Variation in age composition among colony sizes in cliff swallows. J Field Ornithol. 2014;85: 289–300. doi: 10.1111/jofo.12068 29628606

42. Ringsby TH, Berge T, Saether BE, Jensen H. Reproductive success and individual variation in feeding frequency of House Sparrows (Passer domesticus). J Ornithol. 2009;150: 469–481.

43. Brown CR, Brown MB. Ectoparasitism as a cost of coloniality in cliff swallows (Hirundo pyrrhonota). Ecol. 1986;67: 1206–1218.

44. Brown CR, Brown MB. Empirical measurement of parasite transmission between groups in a colonial bird. Ecol. 2004;85: 1619–1626.

45. Runjaic J, Bellovich IJ, Brown CR, Booth W. No detectable insecticide resistance in swallow bugs (Hemiptera: Cimicidae) following long-term exposure to naled (Dibrom 8). J Med Entomol. 2017;54: 994–998. doi: 10.1093/jme/tjw230 28399289

46. Brown CR, Brown MB, Pyle P, Patten MA. Cliff swallow (Petrochelidon pyrrhonota). In Rodewald PG, editor. The birds of North America. Ithaca: Cornell Lab of Ornithology; 2017.

47. Betini GS, Norris DR. The relationship between personality and plasticity in tree swallow aggression and the consequences for reproductive success. Anim Behav. 2012;83: 137–143.

48. Dingemanse NJ, Dochtermann NA. Quantifying individual variation in behavior: mixed-effect modeling approaches. J Anim Ecol. 2013;82: 39–54. doi: 10.1111/1365-2656.12013 23171297

49. Warton DI, Hui FKC. The arcsine is asinine: the analysis of proportions in ecology. Ecol. 2011;92: 3–10.

50. Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67: 1–48.

51. Sih A, Bell A, Johnson JC. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol. 2004;19: 372–378. doi: 10.1016/j.tree.2004.04.009 16701288

52. Bell AM, Hankison SJ, Laskowski KL. The repeatability of behavior: a meta-analysis. Anim Behav. 2009;77: 771–783. doi: 10.1016/j.anbehav.2008.12.022 24707058

53. Nakagawa S, Schielzeth H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev. 2010;85: 935–956. doi: 10.1111/j.1469-185X.2010.00141.x 20569253

54. Stoffel MA, Nakagawa S, Schielzeth H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol Evol. 2017;8: 1639–1644.

55. Carter AJ, Feeney WE, Marshall HH, Cowlishaw G, Heinsohn R. Animal personality: what are behavioral ecologists measuring? Biol Rev. 2013;88: 465–475. doi: 10.1111/brv.12007 23253069

56. Hadfield JD. MCMC methods for multi-response generalized mixed models: the MCMCglmm R package. J Stat Softw. 2010;33: 1–25.

57. Hadfield JD, Wilson AJ, Garant D, Sheldon BC, Kruuk LE. The misuse of BLUP in ecology and evolution. Am Nat. 2010;175: 116–125. doi: 10.1086/648604 19922262

58. Houslay TM, Wilson AJ. Avoiding the misuse of BLUP in behavioral ecology. Behav Ecol. 2017;28: 948–952. doi: 10.1093/beheco/arx023 29622923

59. Pinheiro JC, Bates DM. Mixed-effects models in S and S-PLUS. New York: Springer; 2000.

60. Boon AK, Réale D, Boutin S. The interaction between personality, offspring fitness, and food abundance in North American red squirrels. Ecol Lett. 2007;10: 1094–1104. doi: 10.1111/j.1461-0248.2007.01106.x 17877738

61. Martin JG, Réale D. Temperament, risk assessment and habituation to novelty in eastern chipmunks, Tamius striatus. Anim Behav. 2008;75: 309–318.

62. SAS Institute. SAS/STAT user’s guide, version 9.1. Cary: SAS Institute; 2004.

63. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.

64. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG. Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol. 2011;24: 699–711. doi: 10.1111/j.1420-9101.2010.02210.x 21272107

65. Burns JG. The validity of three tests of temperament in guppies (Poecilia reticulate). J Comp Psychol. 2008;122: 344–356. doi: 10.1037/0735-7036.122.4.344 19014258

66. Carter AJ, Marshall HH, Heinsohn R, Cowlishaw G. How not to measure boldness: novel object and antipredator responses are not the same in wild baboons. Anim Behav. 2012;84: 603–609.

67. Stӧwe M, Kotrschal K. Behavioural phenotypes may determine whether social context facilitates or delays novel object exploration in ravens (Corvus corax). J Ornithol. 2007;148: 179–184.

68. Kurvers RHJM, Eijkelenkamp B, van Oers K, van Lith B, van Wieren SE, Ydenberg RC, et al. Personality differences explain leadership in barnacle geese. Anim Behav. 2009;78: 447–453.

69. Coleman K, Wilson DS. Shyness and boldness in pumpkinseed sunfish: individual differences are context-specific. Anim Behav. 1998;56: 927–936. doi: 10.1006/anbe.1998.0852 9790704

70. Toms CN, Echevarria DJ, Jouandot DJ. How not to measure boldness: novel object and antipredator responses are not the same in wild baboons. Anim Behav. 2012;84: 603–609.

71. Blaszczyk MB. Boldness towards novel objects predicts predator inspection in wild vervet monkeys. Anim Behav. 2017;123: 91–100.

72. Blumstein DT, Petelle MB, Wey TW. Defensive and social aggression: repeatable but independent. Behav Ecol. 2013;24: 457–461.

73. Roche EA, Brown CR, Brown MB, Lear KM. Recapture heterogeneity in cliff swallows: increased exposure to mist nets leads to net avoidance. PLoS One. 2013;8: e58092. doi: 10.1371/journal.pone.0058092 23472138

74. Boon AK, Réale D, Boutin S. Personality, habitat use, and their consequences for survival in North American red squirrels Tamiasciurus hudsonicus. Oikos. 2008;117: 1321–1328.

75. Dingemanse NJ, Both C, Drent PJ, Tinbergen JM. Fitness consequences of avian personalities in a fluctuating environment. Proc R Soc Lond B Biol Sci. 2004;271: 847–852.

76. Patrick SC, Weimerskirch H. Personality, foraging and fitness consequences in a long lived seabird. PLoS One. 2014;4: e87269.

77. Smith BR, Blumstein DT. Fitness consequences of personality: a meta-analysis. Behav Ecol. 2008;19: 448–455.

78. Steiner UK, Tuljapurkar S. Neutral theory for life histories and individual variability in fitness components. Proc Natl Acad Sci U S A. 2012;109: 4684–4689. doi: 10.1073/pnas.1018096109 22392997

79. Jolles JW, Boogert NJ, Sridhar VH, Couzin ID, Manica A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr Biol. 2017;27: 2862–2868. doi: 10.1016/j.cub.2017.08.004 28889975

80. Mutzel A, Dingemanse NJ, Araya-Ajoy YG, Kempenaers B. Parental provisioning behavior plays a key role in linking personality with reproductive success. Proc R Soc Lond B Biol Sci. 2013;280: 20131019.

81. Groves PM, Thompson RF. Habituation: a dual-process theory. Psychol Rev. 1970;5: 419–450.

82. Hebblethwaite ML, Shields WM. Social influences on barn swallow foraging in the Adirondacks: a test of competing hypotheses. Anim Behav. 1990;39: 97–104.

83. Brown CR, Hoogland JL. Risk in mobbing for solitary and colonial swallows. Anim Behav. 1986;34: 1319–1323.

84. Verbeek EM, Boon A, Drent PJ. Exploration, aggressive behavior and dominance in pair-wise confrontations of juvenile male great tits. Behav. 1996;133: 945–963.

85. Webster MM, Ward AJW. Personality and social context. Biol Rev. 2011;86: 759–773. doi: 10.1111/j.1469-185X.2010.00169.x 21091603

86. Coleman SL, Mellgren RL. Neophobia when feeding alone or in flocks in zebra finches, Taeniopygia guttata. Anim Behav. 1994;48: 903–907.

87. van Oers K, Klunder M, Drent PJ. Context dependence of personalities: risk-taking behavior in a social and a nonsocial situation. Behav Ecol. 2005;16: 716–723.

88. Stӧwe M, Bugnyar T, Heinrich B, Kotrschal K. Effects of group size on approach to novel objects in ravens (Corvus corax). Ethology. 2006;112: 1079–1088.

89. Schuett W, Dall SRX. Sex differences, social context and personality in zebra finches, Taeniopygia guttata. Anim Behav. 2009;77: 1041–1050.

90. Mainwaring MC, Beal JL, Hartley IR. Zebra finches are bolder in an asocial rather than social context. Behav Processes. 2011;87: 171–175. doi: 10.1016/j.beproc.2011.03.005 21443934

91. Griffin AS, Lermite F, Perea M, Guez D. To innovate or not: contrasting effects of social groupings on safe and risky foraging in Indian mynahs. Anim Behav. 2013;86: 1291–1300.

92. Kerman K, Miller L, Sewall K. The effect of social context on measures of boldness: zebra finches (Taeniopygia guttata) are bolder when housed individually. Behav Processes. 2018;157: 18–23. doi: 10.1016/j.beproc.2018.08.007 30145276

93. King AJ, Williams LJ, Mettke-Hofmann C. The effects of social conformity on Gouldian finch personality. Anim Behav. 2015;99: 25–31.

94. Tripet F, Richner H. Host responses to ectoparasites: food compensation by parent blue tits. Oikos. 1997;78: 557–561.

95. Hurtrez-Boussès S, Blondel J, Perret P, Fabreguettes J, Renaud F. Chick parasitism by blowflies affects feeding rates in a Mediterranean population of blue tits. Ecol Lett. 1998;1: 17–20.


Článek vyšel v časopise

PLOS One


2019 Číslo 12