HR-pQCT imaging in children, adolescents and young adults: Systematic review and subgroup meta-analysis of normative data


Autoři: Daddy Mata-Mbemba aff001;  Taryn Rohringer aff003;  Ala Ibrahim aff002;  Thomasin Adams-Webberc aff004;  Rahim Moineddin aff005;  Andrea S. Doria aff002;  Reza Vali aff002
Působiště autorů: Department of Diagnostic Imaging, IWK Health Centre, and Department of Diagnostic Radiology, Dalhousie University, Halifax, Nova Scotia, Canada aff001;  Department of Diagnostic Imaging, Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Toronto, Canada aff002;  University of Toronto, Toronto, Canada aff003;  Hospital Library and Archives (T.A.W.), Hospital for Sick Children, Toronto, Canada aff004;  Departments of Family and Community Medicine (R.M.), University of Toronto, Toronto, Canada aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225663

Souhrn

We aimed to investigate the methodologies on image acquisition of normative data of high-resolution peripheral quantitative computed tomography (HR-pQCT) in children, adolescents and/or young adults (up to 25 years) and to determine their normative data based on available literature. A literature search was conducted in MEDLINE, EMBASE and Web of Science from 1947 to July 2019. Quality of articles was assessed using Standards for Reporting of Diagnostic Accuracy (STARD) scoring system and Modified Newcastle-Ottawa scale (NOS). Articles which fitted the following criteria were combined to meta-analysis: age range (15 to 22.6 years), references at tibia (22.5mm) and/or radius (9.0 to 9.5mm). Eight articles were ultimately included in the systematic review and 4 of them that filled the criteria were summarised in meta-analysis. The results of random effects model of HR-pQCT parameters of the 4 articles were as follows: 1)Radius: bone volume fraction (BT/BV) [estimate 0.17:0.1229(lower)-0.2115 (upper); trabecular number (Tb_N):2.08(2.03–2.12); trabecular thickness (Tb.Th):0.07 (0.07–0.0.08); trabecular separation (Tb.Sp):0.41 (0.38–0.42); cortical thickness (Ct.Th):0.85 (0.76–0.94); cortical porosity (Ct.Po):1.53 (0.63–2.44); total area (Tt.Ar):263.66(-385.3–912.6); total bone density (Tt-vBMD):280.5 (73.1–487.7); Trabecular density (Tb-vBMD):223.6 (47.1–400.09), and cortical density (CT.vBMD):765.9 (389.1–1142.8). 2)Tibia: BT/BV:0.18 (0.17–0.19); Tb_N:2.02 (1.83–2.2); Tb.Th:0.08 (0.80–0.09); Tb.Sp:0.40(0.36–0.44); Ct.Th:1.32(1.26–1.38); Ct.Po:3.15 (1.1–5.2); Tt.Ar:693.1(150.2–1235.8); Tt-vBMD:343.76 (335.5–352.1); Tb-vBMD:223.6 (213.37 (193.5–233.2), and CT.vBMD:894.3 (857.6–931.1). There is overall ‘fair’ evidence on reporting of results of normative data of HR-pQCT parameters in children, adolescents and/or young adults. However, data are scarce pointing out to the urgent need for standardization of acquisition parameters and guidelines on the use of HR-PQCT in these populations.

Klíčová slova:

Adolescents – Data acquisition – Pediatrics – Systematic reviews – Young adults


Zdroje

1. Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci. 2017;1410: 93–106. doi: 10.1111/nyas.13572 29265417

2. Digby MG, Bishop NJ, Paggiosi MA, Offiah AC. HR-pQCT: a non-invasive “biopsy” to assess bone structure and strength. Arch Dis Child Educ Pract Ed. 2016;101: 268–270. doi: 10.1136/archdischild-2015-309455 27122599

3. Cohen A, Dempster DW, Müller R, Guo XE, Nickolas TL, Liu XS, et al. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int. 2010;21: 263–273. doi: 10.1007/s00198-009-0945-7 19455271

4. Agarwal S, Rosete F, Zhang C, McMahon DJ, Guo XE, Shane E, et al. In vivo assessment of bone structure and estimated bone strength by first- and second-generation HR-pQCT. Osteoporos Int J. 2016;27: 2955–2966.

5. Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, et al. High-Resolution Peripheral Quantitative Computed Tomography for the Assessment of Bone Strength and Structure: A Review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep [Internet]. 2013;11:136–146. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641288/ doi: 10.1007/s11914-013-0140-9 23525967

6. Gabel L, Macdonald HM, Nettlefold LA, McKay HA. Sex-, Ethnic-, and Age-Specific Centile Curves for pQCT- and HR-pQCT-Derived Measures of Bone Structure and Strength in Adolescents and Young Adults. J Bone Miner Res. 2018;33: 987–1000. doi: 10.1002/jbmr.3399 29394462

7. Melton LJ, Riggs BL, van Lenthe GH, Achenbach SJ, Müller R, Bouxsein ML, et al. Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res. 2007;22: 1442–1448. doi: 10.1359/jbmr.070514 17539738

8. MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2007;29: 1096–1105. doi: 10.1016/j.medengphy.2006.11.002 17229586

9. MacNeil JA, Boyd SK. Load distribution and the predictive power of morphological indices in the distal radius and tibia by high resolution peripheral quantitative computed tomography. Bone. 2007;41: 129–137. doi: 10.1016/j.bone.2007.02.029 17442649

10. Vilayphiou N, Boutroy S, Sornay-Rendu E, Van Rietbergen B, Munoz F, Delmas PD, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women. Bone. 2010;46: 1030–1037. doi: 10.1016/j.bone.2009.12.015 20044044

11. Zhang XH, Liu XS, Vasilic B, Wehrli FW, Benito M, Rajapakse CS, et al. In vivo microMRI-based finite element and morphological analyses of tibial trabecular bone in eugonadal and hypogonadal men before and after testosterone treatment. J Bone Miner Res. 2008;23: 1426–1434. doi: 10.1359/jbmr.080405 18410234

12. Pezzuti IL, Kakehasi AM, Filgueiras MT, de Guimarães JA, de Lacerda IAC, Silva IN. Imaging methods for bone mass evaluation during childhood and adolescence: an update. J Pediatr Endocrinol Metab. 2017;30: 485–497. doi: 10.1515/jpem-2016-0252 28328530

13. Chevalley T, Bonjour J-P, Audet M-C, Merminod F, van Rietbergen B, Rizzoli R, et al. Fracture Prospectively Recorded From Prepuberty to Young Adulthood: Are They Markers of Peak Bone Mass and Strength in Males? J Bone Miner Res. 2017;32: 1963–1969. doi: 10.1002/jbmr.3174 28543781

14. Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci. 2017;1410: 93–106. doi: 10.1111/nyas.13572 29265417

15. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151: 65–94.

16. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62: 1006–1012. doi: 10.1016/j.jclinepi.2009.06.005 19631508

17. Ackerman KE, Nazem T, Chapko D, Russell M, Mendes N, Taylor AP, et al. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab. 2011;96: 3123–3133. doi: 10.1210/jc.2011-1614 21816790

18. Burt LA, Macdonald HM, Hanley DA, Boyd SK. Bone microarchitecture and strength of the radius and tibia in a reference population of young adults: an HR-pQCT study. Arch Osteoporos. 2014;9: 183. doi: 10.1007/s11657-014-0183-2 24862979

19. Rudäng R, Darelid A, Nilsson M, Mellström D, Ohlsson C, Lorentzon M. X-ray-verified fractures are associated with finite element analysis-derived bone strength and trabecular microstructure in young adult men. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28: 2305–2316.

20. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Fam Pract. 2004;21: 4–10. doi: 10.1093/fampra/cmh103 14760036

21. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155: 529–536. doi: 10.7326/0003-4819-155-8-201110180-00009 22007046

22. McInnes MDF, Bossuyt PMM. Pitfalls of Systematic Reviews and Meta-Analyses in Imaging Research. Radiology. 2015;277: 13–21. doi: 10.1148/radiol.2015142779 26402491

23. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Internet]. 2019. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

24. Eng KA, Abadeh A, Ligocki C, Lee YK, Moineddin R, Adams-Webber T, et al. Acute Appendicitis: A Meta-Analysis of the Diagnostic Accuracy of US, CT, and MRI as Second-Line Imaging Tests after an Initial US. Radiology. 2018;288: 717–727. doi: 10.1148/radiol.2018180318 29916776

25. Chan MW, Leckie A, Xavier F, Uleryk E, Tadros S, Blanchette V, et al. A systematic review of MR imaging as a tool for evaluating haemophilic arthropathy in children. Haemophilia. 2013;19: 324–334.

26. Ligocki CC, Abadeh A, Wang KC, Adams-Webber T, Blanchette VS, Doria AS. A systematic review of ultrasound imaging as a tool for evaluating haemophilic arthropathy in children and adults. Haemophilia. 2017;23: 598–612. doi: 10.1111/hae.13163 28429878

27. Penson DF, Krishnaswami S, Jules A, Seroogy JC, McPheeters ML. Evaluation and Treatment of Cryptorchidism [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2012. (AHRQ Comparative Effectiveness Reviews). Available from: http://www.ncbi.nlm.nih.gov/books/NBK115847/

28. Viswanathan M, Ansari MT, Berkman ND, Chang S, Hartling L, McPheeters M, et al. Assessing the Risk of Bias of Individual Studies in Systematic Reviews of Health Care Interventions. In: Methods Guide for Effectiveness and Comparative Effectiveness Reviews [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2008. (AHRQ Methods for Effective Health Care). Available from: http://www.ncbi.nlm.nih.gov/books/NBK91433/

29. Harris RP, Helfand M, Woolf SH, Lohr KN, Mulrow CD, Teutsch SM, et al. Current methods of the U.S. Preventive Services Task Force: A review of the process. Am J Prev Med [Internet]. 2001;20:21–35. Available from: https://www.ajpmonline.org/article/S0749-3797(01)00261-6/abstract

30. Cheuk K-Y, Tam EM-S, Yu FW-P, Yip BH-K, Hung VW-Y, Wang X, et al. A Critical Comparison Between Two Scanning Protocols of High-Resolution Peripheral Quantitative Computed Tomography at the Distal Radius in Adolescents. J Clin Densitom. 2016;19: 305–315. doi: 10.1016/j.jocd.2016.04.002 27130257

31. Kawalilak CE, Bunyamin AT, Björkman KM, Johnston JD, Kontulainen SA. Precision of bone density and micro-architectural properties at the distal radius and tibia in children: an HR-pQCT study. Osteoporos Int. 2017;28: 3189–3197. doi: 10.1007/s00198-017-4185-y 28921128

32. Kirmani S, Amin S, McCready LK, Atkinson EJ, Melton LJ, Müller R, et al. Sclerostin levels during growth in children. Osteoporos Int. 2012;23: 1123–1130. doi: 10.1007/s00198-011-1669-z 21617991

33. Dalzell N, Kaptoge S, Morris N, Berthier A, Koller B, Braak L, et al. Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos Int. 2009;20: 1683–1694. doi: 10.1007/s00198-008-0833-6 19152051

34. Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res. 2011;26: 50–62. doi: 10.1002/jbmr.171 20593413

35. Farr JN, Khosla S, Achenbach SJ, Atkinson EJ, Kirmani S, McCready LK, et al. Diminished bone strength is observed in adult women and men who sustained a mild trauma distal forearm fracture during childhood. J Bone Miner Res. 2014;29:2193–2202. doi: 10.1002/jbmr.2257 24753047

36. Burrows M, Liu D, McKay H. High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int. 2010;21: 515–520. doi: 10.1007/s00198-009-0913-2 19322507

37. Manske SL, Davison EM, Burt LA, Raymond DA, Boyd SK. The Estimation of Second-Generation HR-pQCT From First-Generation HR-pQCT Using In Vivo Cross-Calibration. J Bone Miner Res. 2017;32:1514–1524. doi: 10.1002/jbmr.3128 28294415


Článek vyšel v časopise

PLOS One


2019 Číslo 12