Hydrogel based protein biochip for parallel detection of biomarkers for diagnosis of a Systemic Inflammatory Response Syndrome (SIRS) in human serum

Autoři: Anne Stumpf aff001;  Thomas Brandstetter aff001;  Johannes Hübner aff002;  Jürgen Rühe aff001
Působiště autorů: Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee, Freiburg, Germany aff001;  Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximilian's University, Munich, Germany, Lindwurmstr, Munich, Germany aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225525


The Systemic Inflammatory Response Syndrome (SIRS), a sepsis related inflammatory state, is a self-defense mechanism against specific and nonspecific stimuli. The six most extensively studied inflammatory biomarkers for the clinical diagnosis of SIRS are interleukin 4 (hIL-4), interleukin 6 (hIL-6), interleukin 10 (hIL-10), tumor necrosis factor alpha (hTNF-α), interferon gamma (hIFN-γ) and procalcitonin (hPCT). These biomarkers are naturally present (but usually only at low concentration) in SIRS infected patients [1, 2] and thus the development of a highly sensitive detection method is of major clinical interest. However, the existing analytical techniques are lacking in required analytical sensitivity and parallel determination of these biomarkers. We developed a fast, easy and cost-efficient protein microarray biochip where the capture molecules are attached on hydrogel spots, enabling SIRS diagnosis by parallel detection of these six clinically relevant biomarkers with a sample volume of 25 μl. With our hydrogel based protein microarray biochip we achieved a limit of detection for hIL-4 of 75.2 pg/ml, for hIL-6 of 45.1 pg/ml, for hIL-10 of 71.5 pg/ml, for hTNF-α of 56.7 pg/ml, for IFN-γ of 46.4 pg/ml and for hPCT of 1.1 ng/ml in spiked human serum demonstrating sufficient sensitivity for clinical usage. Additionally, we demonstrated successful detection of two relevant SIRS biomarkers in clinical patient samples with a turnaround time of the complete analysis from sample-to-answer in less than 200 minutes.

Klíčová slova:

Biomarkers – Enzyme-linked immunoassays – Gels – Immunoassays – Microarrays – Polymers – Serum proteins – Systemic inflammatory response syndrome


1. Delehanty J.B., Ligler F.S., A Microarray Immunoassay for Simultaneous Detection of Proteins and Bacteria. Analytical Chemistry, 2002. 74(21): p. 5681–5687. doi: 10.1021/ac025631l 12433105

2. Wang J., Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosensors and Bioelectronics, 2006. 21(10): p. 1887–1892. doi: 10.1016/j.bios.2005.10.027 16330202

3. Mader A., Riehle U., Brandstetter T., Stickeler E., Rühe J., Universal nucleic acid sequence-based amplification for simultaneous amplification of messengerRNAs and microRNAs. Analytica Chimica Acta, 2012. 754: p. 1–7. doi: 10.1016/j.aca.2012.09.045 23140948

4. Ge H., UPA, a universal protein array system for quantitative detection of protein–protein, protein–DNA, protein–RNA and protein–ligand interactions, Nucleic Acids Research, 2000, 28 (2), e3 1–7.

5. Ramsay G., DNA chips: State-of-the art. Nat Biotech, 1998. 16(1): p. 40–44.

6. Haab B.B., Dunham M.J., Brown P.O., Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biology, 2001. 2(2): p. research0004.1-research0004.13.

7. Rusmini F., Zhong Z.Y., Feijen J., Protein immobilization strategies for protein biochips. Biomacromolecules, 2007. 8(6): p. 1775–1789. doi: 10.1021/bm061197b 17444679

8. Wilson D.S., Nock S., Functional protein microarrays. Current Opinion in Chemical Biology, 2002. 6(1): p. 81–85. doi: 10.1016/s1367-5931(01)00281-2 11827828

9. Kusnezow W., Hoheisel J.D., Solid supports for microarray immunoassays. Journal of Molecular Recognition, 2003. 16(4): p. 165–176. doi: 10.1002/jmr.625 12898667

10. Moschallski M., Evers A., Brandstetter T., Rühe J., Sensitivity of microarray based immunoassays using surface-attached hydrogels. Analytica Chimica Acta, 2013. 781: p. 72–79. doi: 10.1016/j.aca.2013.04.013 23684467

11. Brandstetter T., Böhmer S., Prucker O., Bisse E., Hausen A., Alt-Mörbe J., Rühe J., A polymer-based DNA biochip platform for human papilloma virus genotyping. Journal of Virological Methods, 2010. 163(1): p. 40–48. doi: 10.1016/j.jviromet.2009.07.027 19664659

12. Kalme S., Kandaswamy S., Chandrasekharmath A., Katiyar R., Rajamanickam G.P., Kumar S.and Dendukuri D., A hydrogel sensor-based microfluidic platform for the quantitative and multiplexed detection of fertility markers for point-of-care immunoassays, Analytical Methods, 2019, 11 (12), 1639–1650.

13. Randriantsilefisoa R., Cuellar-Camacho J.L., Chowdhury M.S., Dey P., Schedler U. and Haag R., Highly sensitive detection of antibodies in a soft bioactive three-dimensional bioorthogonal hydrogel, Journal of Materials Chemistry B, 2019, 7 (20), 3220–3231

14. Gagni P., Romanato A., Bergamaschi G., Bettotti P., Vanna R., Piotto C., et. al., A self-assembling peptide hydrogel for ultrarapid 3D bioassays, Nanoscale Advances, 2019, 1 (2), 490–497

15. Davies M.G., Hagen P.O., Systemic inflammatory response syndrome, British Journal of Surgery, 1997, 84 (7), 920–935. doi: 10.1002/bjs.1800840707 9240130

16. Rangel-Frausto M., Pittet D., Costigan M., Hwang T., Davis C.S. and Wenzel R.P., Thenatural history of the systemic inflammatory response syndrome (SIRS): A prospectivestudy, JAMA, 1995, 273 (2), 117–123. 15. 7799491

17. Tilg H., Moschen A.R., Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol, 2006. 6(10): p. 772–783. doi: 10.1038/nri1937 16998510

18. Kemmler M., Sauer U., Schleicher E., Preininger, Brandenburg A., Biochip point of-care device for sepsis diagnostics, Sensors and Actuators B-Chemical, 2014, 192,205–215.

19. Buchegger P., Preininger C., Four Assay Designs and On-Chip Calibration: Gadgets for a Sepsis Protein Array. Analytical Chemistry, 2014. 86(6): p. 3174–3180. doi: 10.1021/ac5000784 24552299

20. Rendl M., Bonisch A., Mader A., Schuh K., Prucker O., Brandstetter T. and Ruhe J., Simple One-Step Process for Immobilization of Biomolecules on Polymer Substrates Based on Surface-Attached Polymer Networks, Langmuir, 2011, 27 (10), 6116–6123. doi: 10.1021/la1050833 21491877

21. Yu Q., Wang Q., Li B., Lin Q., Duan Y., Technological Development of Antibody Immobilization for Optical Immunoassays: Progress and Prospects. Critical Reviews in Analytical Chemistry, 2015. 45(1): p. 62–75.

22. Findlay J.W.A., Dillard R.F., Appropriate calibration curve fitting in ligand binding assays. The AAPS Journal, 2007. 9(2): p. E260–E267. doi: 10.1208/aapsj0902029 17907767

23. Guidance for Industry, Bioanalytical Method Validation. 2001, U.S. Department ofHealth and Human Services, Food and Drug Administration, Center for DrugEvaluation and Research, Center for Veterinary Medicine.

24. Jackson T.M. Ekins R.P., Theoretical limitations on immunoassay sensitivity: Current practice and potential advantages of fluorescent Eu3+ chelates as non-radioisotopic tracers. Journal of Immunological Methods, 1986. 87(1): p. 13–20. doi: 10.1016/0022-1759(86)90338-8 3512720

25. Lvovschi V., Arnaud L., Parizot C., Freund Y., Juillien G. Ghillani-Dalbin P., et. al., Cytokine Profiles in Sepsis Have Limited Relevance for Stratifying Patients in the Emergency Department: A Prospective Observational Study, Plos One, 2011, 6 (12), e288701–e2887013.

26. Kawai S., Sakayori S., Watanabe H., Nakagawa T., Inoue G., Kobayashi H., The roleof interleukin-10 in systemic inflammatory response syndrome with sepsis, Journal of Infection and Chemotherapy, 1997, 4 (3), 121–127.

27. Oberhoffer M., Bögel D., Meier-Hellmann A., Vogelsang H., Reinhart K., ACCP/SCCM Consensus Conference definitions correlate better with procalcitonin than tumor-necrosis-factor-α and interleukin-6, Intensive Care Medicine, 1996, 22 (1),S15–S15.

28. Rosenberg-Hasson Y., Hansmann L., Liedtke M., Herschmann I., Holden T. T., Effects of serum and plasma matrices on multiplex immunoassays. Immunologic Research, 2014. 58(2): p. 224–233.

29. Czilwik G., Vashist S.K., Klein V., Buderer A., Roth G., von Stetten F., et. al., Magnetic chemiluminescent immunoassay for human C-reactive protein on the centrifugal microfluidics platform, Rsc Advances, 2015, 5 (76), 61906–6191228.

30. Vashist S.K., Czilwik G., van Oordt T., von Stetten F., Zengerle R., Schneider M., et al., One-step kinetics-based immunoassay for the highly sensitive detection of C-reactive protein in less than 30 min. Analytical Biochemistry, 2014. 456: p. 32–37. doi: 10.1016/j.ab.2014.04.004 24732114

31. Draper N. R., Applied Regression Analysis, 3rd Edition. 1998.

32. Zou K.H., Tuncali K., Silverman S.G., Correlation and Simple Linear Regression. Radiology, 2003. 227(3): p. 617–628. doi: 10.1148/radiol.2273011499 12773666

33. Kao H.P., Abney J.R., Verkman A.S., Determinants of the translational mobility of a small solute in cell cytoplasm. The Journal of Cell Biology, 1993. 120(1): p. 175–184. doi: 10.1083/jcb.120.1.175 8416987

34. Tate J. Ward G., Interferences in Immunoassay. The Clinical Biochemist Reviews, 2004. 25(2): p. 105–120. 18458713

Článek vyšel v časopise


2019 Číslo 12