The evolution and genetic diversity of avian influenza A(H9N2) viruses in Cambodia, 2015 – 2016

Autoři: Annika Suttie aff001;  Songha Tok aff001;  Sokhoun Yann aff001;  Ponnarath Keo aff001;  Srey Viseth Horm aff001;  Merryn Roe aff003;  Matthew Kaye aff003;  San Sorn aff004;  Davun Holl aff004;  Sothyra Tum aff004;  Ian G. Barr aff002;  Aeron C. Hurt aff003;  Andrew R. Greenhill aff002;  Erik A. Karlsson aff001;  Dhanasekaran Vijaykrishna aff003;  Yi-Mo Deng aff003;  Philippe Dussart aff001;  Paul F. Horwood aff001
Působiště autorů: Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia aff001;  School of Health and Life Sciences, Federation University, Churchill, Australia aff002;  WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia aff003;  National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Cambodian Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia aff004;  Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia aff005;  Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria Australia aff006;  College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia aff007
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225428


Low pathogenic A(H9N2) subtype avian influenza viruses (AIVs) were originally detected in Cambodian poultry in 2013, and now circulate endemically. We sequenced and characterised 64 A(H9N2) AIVs detected in Cambodian poultry (chickens and ducks) from January 2015 to May 2016. All A(H9) viruses collected in 2015 and 2016 belonged to a new BJ/94-like h9-4.2.5 sub-lineage that emerged in the region during or after 2013, and was distinct to previously detected Cambodian viruses. Overall, there was a reduction of genetic diversity of H9N2 since 2013, however two genotypes were detected in circulation, P and V, with extensive reassortment between the viruses. Phylogenetic analysis showed a close relationship between A(H9N2) AIVs detected in Cambodian and Vietnamese poultry, highlighting cross-border trade/movement of live, domestic poultry between the countries. Wild birds may also play a role in A(H9N2) transmission in the region. Some genes of the Cambodian isolates frequently clustered with zoonotic A(H7N9), A(H9N2) and A(H10N8) viruses, suggesting a common ecology. Molecular analysis showed 100% of viruses contained the hemagglutinin (HA) Q226L substitution, which favours mammalian receptor type binding. All viruses were susceptible to the neuraminidase inhibitor antivirals; however, 41% contained the matrix (M2) S31N substitution associated with resistance to adamantanes. Overall, Cambodian A(H9N2) viruses possessed factors known to increase zoonotic potential, and therefore their evolution should be continually monitored.

Klíčová slova:

Antimicrobial resistance – Bird genomics – Phylogenetic analysis – Phylogenetics – Poultry – Viral genomics – Zoonoses


1. Liu Y-F, Lai H-Z, Li L, Liu Y-P, Zhang W-Y, Gao R, et al. Endemic Variation of H9N2 Avian Influenza Virus in China. Avian Dis 2016;60:817–25. doi: 10.1637/11452-061616-Reg 27902899

2. Nagy A, Mettenleiter TC, Abdelwhab EM. A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiol Infect 2017;145:3320–33. doi: 10.1017/S0950268817002576 29168447

3. Li C, Yu K, Tian G, Yu D, Liu L, Jing B, et al. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology 2005;340:70–83. doi: 10.1016/j.virol.2005.06.025 16026813

4. Gu M, Xu L, Wang X, Liu X. Current situation of H9N2 subtype avian influenza in China. Vet Res 2017;48:49. doi: 10.1186/s13567-017-0453-2 28915920

5. Qi X, Tan D, Wu C, Tang C, Li T, Han X, et al. Deterioration of eggshell quality in laying hens experimentally infected with H9N2 avian influenza virus. Vet Res 2016;47. doi: 10.1186/s13567-016-0332-2

6. Naeem K, Naurin M, Rashid S, Bano S. Seroprevalence of avian influenza virus and its relationship with increased mortality and decreased egg production. Avian Pathol 2003;32:283–7.

7. Kishida N, Sakoda Y, Eto M, Sunaga Y, Kida H. Co-infection of Staphylococcus aureus or Haemophilus paragallinarum exacerbates H9N2 influenza A virus infection in chickens. Arch Virol 2004;149:2095–2104. doi: 10.1007/s00705-004-0372-1 15503199

8. Azizpour A, Goudarzi H, Charkhkar S, Momayez R, Hablolvarid M, others. Experimental study on tissue tropism and dissemination of H9N2 avian influenza virus and Ornithobacterium rhinotracheale co-infection in SPF chickens. JAPS J Anim Plant Sci 2014;24:1655–62.

9. Umar S, Guerin JL, Ducatez MF. Low Pathogenic Avian Influenza and Coinfecting Pathogens: A Review of Experimental Infections in Avian Models. Avian Dis 2017;61:3–15. doi: 10.1637/11514-101316-Review 28301244

10. Nili H, Asasi K. Avian Influenza (H9N2) Outbreak in Iran. Avian Dis 2003;47:828–31. doi: 10.1637/0005-2086-47.s3.828 14575072

11. Nili H, Asasi K. Natural cases and an experimental study of H9N2 avian influenza in commercial broiler chickens of Iran. Avian Pathol 2002;31:247–52. doi: 10.1080/03079450220136567 12396348

12. WHO. Influenza at the human-animal interface: Summary and assessment, 2 November to 13 December 2018. 2018.

13. Peacock TP, James J, Sealy JE, Iqbal M. A Global Perspective on H9N2 Avian Influenza Virus. Viruses 2019;11:620.

14. World Health Organisation. Influenza at the human-animal interface Summary and assessment, 20 July to 3 October 2016. 2016.

15. Guo YJ, Krauss S, Senne DA, Mo IP, Lo KS, Xiong XP, et al. Characterization of the Pathogenicity of Members of the Newly Established H9N2 Influenza Virus Lineages in Asia. Virology 2000;267:279–88. doi: 10.1006/viro.1999.0115 10662623

16. Huang Y, Li X, Zhang H, Chen B, Jiang Y, Yang L, et al. Human infection with an avian influenza A (H9N2) virus in the middle region of China: Human Infection With an Avian Influenza A (H9N2) Virus. J Med Virol 2015;87:1641–8. doi: 10.1002/jmv.24231 25965534

17. Peiris M, Yuen KY, Leung CW, Chan KH, Ip PLS, Lai RWM, et al. Human infection with influenza H9N2. The Lancet 1999;354:916–917.

18. Pu J, Wang S, Yin Y, Zhang G, Carter RA, Wang J, et al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proc Natl Acad Sci 2015;112:548–53. doi: 10.1073/pnas.1422456112 25548189

19. Shen Y-Y, Ke C-W, Li Q, Yuan R-Y, Xiang D, Jia W-X, et al. Influenza A(H5N6) Viruses in Humans, Guangdong, China, 2015. Emerg Infect Dis 2016;22:3.

20. Zhang T, Bi Y, Tian H, Li X, Liu D, Wu Y, et al. Human Infection with Influenza Virus A(H10N8) from Live Poultry Markets, China, 2014. Emerg Infect Dis 2014;20.

21. Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, et al. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. The Lancet 2013;381:1926–32.

22. Gu M, Chen H, Li Q, Huang J, Zhao M, Gu X, et al. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China. Vet Microbiol 2014;174:309–15. doi: 10.1016/j.vetmic.2014.09.029 25457363

23. Guan Y, Shortridge KF, Krauss S, Webster RG. Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci 1999;96:9363–9367. doi: 10.1073/pnas.96.16.9363 10430948

24. Horm SV, Tarantola A, Rith S, Ly S, Gambaretti J, Duong V, et al. Intense circulation of A/H5N1 and other avian influenza viruses in Cambodian live-bird markets with serological evidence of sub-clinical human infections. Emerg Microbes Infect 2016;5:e70. doi: 10.1038/emi.2016.69 27436362

25. Horm SV, Sorn S, Allal L, Buchy P. Influenza A(H5N1) Virus Surveillance at Live Poultry Markets, Cambodia, 2011. Emerg Infect Dis 2013;19:305–8. doi: 10.3201/eid1902.121201 23347451

26. Vijaykrishna D, Deng Y-M, Grau ML, Kay M, Suttie A, Horwood PF, et al. Emergence of Influenza A(H7N4) Virus, Cambodia. Emerg Infect Dis 2019;25.

27. Suttie A, Yann S, Y P, Tum S, Deng Y-M, Hul V, et al. Detection of Low Pathogenicity Influenza A(H7N3) Virus during Duck Mortality Event, Cambodia, 2017. Emerg Infect Dis 2018;24:1103–7. doi: 10.3201/eid2406.172099 29774842

28. Horwood PF, Horm SV, Suttie A, Thet S, Phalla Y, Rith S, et al. Co-circulation of Influenza A H5, H7, and H9 Viruses and Co-infected Poultry in Live Bird Markets, Cambodia. Emerg Infect Dis 2018;24.

29. Karlsson EA, Horm SV, Tok S, Tum S, Kalpravidh W, Claes F, et al. Avian influenza virus detection, temporality and co-infection in poultry in Cambodian border provinces, 2017–2018. Emerg Microbes Infect 2019;8:637–9. doi: 10.1080/22221751.2019.1604085 30999819

30. Thuy DM, Peacock TP, Bich VTN, Fabrizio T, Hoang DN, Tho ND, et al. Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014. Infect Genet Evol 2016;44:530–40. doi: 10.1016/j.meegid.2016.06.038 27340015

31. Kim Y, Biswas PK, Giasuddin M, Hasan M, Mahmud R, Chang Y-M, et al. Prevalence of Avian Influenza A(H5) and A(H9) Viruses in Live Bird Markets, Bangladesh. Emerg Infect Dis 2018;24:2309–16. doi: 10.3201/eid2412.180879 30457545

32. Luo S, Xie Z, Xie Z, Xie L, Huang L, Huang J, et al. Surveillance of Live Poultry Markets for Low Pathogenic Avian Influenza Viruses in Guangxi Province, Southern China, from 2012–2015. Sci Rep 2017;7.

33. Van Kerkhove MD, Vong S, Guitian J, Holl D, Mangtani P, San S, et al. Poultry movement networks in Cambodia: Implications for surveillance and control of highly pathogenic avian influenza (HPAI/H5N1). Vaccine 2009;27:6345–52. doi: 10.1016/j.vaccine.2009.05.004 19840671

34. Horm SV, Gutiérrez RA, Sorn S, Buchy P. Environment: a potential source of animal and human infection with influenza A (H5N1) virus: Influenza A (H5N1) virus in the environment. Influenza Other Respir Viruses 2012;6:442–8. doi: 10.1111/j.1750-2659.2012.00338.x 22340982

35. Zhou B, Wentworth DE. Influenza A Virus Molecular Virology Techniques. In: Kawaoka Y, Neumann G, editors. Influenza Virus, vol. 865, Totowa, NJ: Humana Press; 2012, p. 175–92.

36. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 2001;146:2275–2289. doi: 10.1007/s007050170002 11811679

37. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 2017;22.

38. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res 2013;41:D36–42. doi: 10.1093/nar/gks1195 23193287

39. Squires RB, Noronha J, Hunt V, García-Sastre A, Macken C, Baumgarth N, et al. Influenza Research Database: an integrated bioinformatics resource for influenza research and surveillance: Influenza Research Database. Influenza Other Respir Viruses 2012;6:404–16. doi: 10.1111/j.1750-2659.2011.00331.x 22260278

40. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol 2013;30:772–80. doi: 10.1093/molbev/mst010 23329690

41. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32:268–274. doi: 10.1093/molbev/msu300 25371430

42. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol Biol Evol 2013;30:1188–95. doi: 10.1093/molbev/mst024 23418397

43. Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 1986;17:57–86.

44. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012;29:1969–73. doi: 10.1093/molbev/mss075 22367748

45. Shapiro B, Rambaut A, Drummond AJ. Choosing Appropriate Substitution Models for the Phylogenetic Analysis of Protein-Coding Sequences. Mol Biol Evol 2006;23:7–9. doi: 10.1093/molbev/msj021 16177232

46. Drummond AJ, Ho SY, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol 2006;4:e88. doi: 10.1371/journal.pbio.0040088 16683862

47. Minin VN, Bloomquist EW, Suchard MA. Smooth Skyride through a Rough Skyline: Bayesian Coalescent-Based Inference of Population Dynamics. Mol Biol Evol 2008;25:1459–71. doi: 10.1093/molbev/msn090 18408232

48. Andrew Rambaut. Molecular evolution, phylogenetics and epidemiology: FigTree 2016.

49. Gu M, Xu L, Wang X, Liu X. Current situation of H9N2 subtype avian influenza in China. Vet Res 2017;48:49. doi: 10.1186/s13567-017-0453-2 28915920

50. Suttie A, Deng Y-M, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019.

51. Gupta R, Jung E, Brunak S. Prediction of N-glycosylation sites in human proteins. 2004. Ref Type Unpubl Work 2016.

52. Pond SLK, Muse SV. HyPhy: hypothesis testing using phylogenies. Stat. Methods Mol. Evol., Springer; 2005, p. 125–181.

53. Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol 2018;35:773–777. doi: 10.1093/molbev/msx335 29301006

54. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 2013;30:1196–1205. doi: 10.1093/molbev/mst030 23420840

55. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK. Detecting individual sites subject to episodic diversifying selection. PLoS Genet 2012;8:e1002764. doi: 10.1371/journal.pgen.1002764 22807683

56. Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 2005;22:1208–1222. doi: 10.1093/molbev/msi105 15703242

57. Leang S-K, Hurt AC. Fluorescence-based Neuraminidase Inhibition Assay to Assess the Susceptibility of Influenza Viruses to The Neuraminidase Inhibitor Class of Antivirals. J Vis Exp 2017.

58. Jiang W, Liu S, Hou G, Li J, Zhuang Q, Wang S, et al. Chinese and Global Distribution of H9 Subtype Avian Influenza Viruses. PLoS ONE 2012;7:e52671. doi: 10.1371/journal.pone.0052671 23285143

59. Huang Y, Hu B, Wen X, Cao S, Gavrilov BK, Du Q, et al. Diversified reassortant H9N2 avian influenza viruses in chicken flocks in northern and eastern China. Virus Res 2010;151:26–32. doi: 10.1016/j.virusres.2010.03.010 20347894

60. Zhu R, Xu D, Yang X, Zhang J, Wang S, Shi H, et al. Genetic and biological characterization of H9N2 avian influenza viruses isolated in China from 2011 to 2014. PLOS ONE 2018;13:e0199260. doi: 10.1371/journal.pone.0199260 29969454

61. Xiao C, Ma W, Sun N, Huang L, Li Y, Zeng Z, et al. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Sci Rep 2016;6.

62. Hu M, Yuan S, Zhang K, Singh K, Ma Q, Zhou J, et al. PB2 substitutions V598T/I increase the virulence of H7N9 influenza A virus in mammals. Virology 2017;501:92–101. doi: 10.1016/j.virol.2016.11.008 27889648

63. Wang C, Lee HHY, Yang ZF, Mok CKP, Zhang Z. PB2-Q591K Mutation Determines the Pathogenicity of Avian H9N2 Influenza Viruses for Mammalian Species. PLOS ONE 2016;11:e0162163. doi: 10.1371/journal.pone.0162163 27684944

64. Sang X, Wang A, Chai T, He X, Ding J, Gao X, et al. Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adoption in mice. Arch Virol 2015;160:1267–77. doi: 10.1007/s00705-015-2383-5 25782865

65. Sediri H, Thiele S, Schwalm F, Gabriel G, Klenk H-D. PB2 subunit of avian influenza virus subtype H9N2: a pandemic risk factor. J Gen Virol 2016;97:39–48. doi: 10.1099/jgv.0.000333 26560088

66. Feng X, Wang Z, Shi J, Deng G, Kong H, Tao S, et al. Glycine at Position 622 in PB1 Contributes to the Virulence of H5N1 Avian Influenza Virus in Mice. J Virol 2016;90:1872–9. doi: 10.1128/JVI.02387-15 26656683

67. James J, Howard W, Iqbal M, Nair VK, Barclay WS, Shelton H. Influenza A virus PB1-F2 protein prolongs viral shedding in chickens lengthening the transmission window. J Gen Virol 2016;97:2516–27. doi: 10.1099/jgv.0.000584 27558742

68. Hu M, Chu H, Zhang K, Singh K, Li C, Yuan S, et al. Amino acid substitutions V63I or A37S/I61T/V63I/V100A in the PA N-terminal domain increase the virulence of H7N7 influenza A virus. Sci Rep 2016;6:37800. doi: 10.1038/srep37800 27886255

69. Xu G, Zhang X, Gao W, Wang C, Wang J, Sun H, et al. Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity. J Virol 2016;90:8105–14. doi: 10.1128/JVI.00883-16 27384648

70. Gao H, Liu J, Kong W, Sun H, Pu J, Chang K-C, et al. PA-X is a virulence factor in avian H9N2 influenza virus. J Gen Virol 2015;96:2587–94. doi: 10.1099/jgv.0.000232 26296365

71. Baron J, Tarnow C, Mayoli-Nüssle D, Schilling E, Meyer D, Hammami M, et al. Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses. J Virol 2013;87:1811–1820. doi: 10.1128/JVI.02320-12 23192872

72. Gohrbandt S, Veits J, Breithaupt A, Hundt J, Teifke JP, Stech O, et al. H9 avian influenza reassortant with engineered polybasic cleavage site displays a highly pathogenic phenotype in chicken. J Gen Virol 2011;92:1843–53. doi: 10.1099/vir.0.031591-0 21525207

73. Su Y, Yang H-Y, Zhang B-J, Jia H-L, Tien P. Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells. Arch Virol 2008;153:2253–61. doi: 10.1007/s00705-008-0255-y 19020946

74. Auewarakul P, Suptawiwat O, Kongchanagul A, Sangma C, Suzuki Y, Ungchusak K, et al. An avian influenza H5N1 virus that binds to a human-type receptor. J Virol 2007;81:9950–5. doi: 10.1128/JVI.00468-07 17626098

75. Wang W, Lu B, Zhou H, Suguitan AL, Cheng X, Subbarao K, et al. Glycosylation at 158N of the Hemagglutinin Protein and Receptor Binding Specificity Synergistically Affect the Antigenicity and Immunogenicity of a Live Attenuated H5N1 A/Vietnam/1203/2004 Vaccine Virus in Ferrets. J Virol 2010;84:6570–7. doi: 10.1128/JVI.00221-10 20427525

76. Teng Q, Xu D, Shen W, Liu Q, Rong G, Li X, et al. A Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in Mice. J Virol 2016;90:9806–25. doi: 10.1128/JVI.01141-16 27558420

77. Yamada S, Suzuki Y, Suzuki T, Le MQ, Nidom CA, Sakai-Tagawa Y, et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 2006;444:378–82. doi: 10.1038/nature05264 17108965

78. Wan H, Sorrell EM, Song H, Hossain MJ, Ramirez-Nieto G, Monne I, et al. Replication and Transmission of H9N2 Influenza Viruses in Ferrets: Evaluation of Pandemic Potential. PLoS ONE 2008;3:e2923. doi: 10.1371/journal.pone.0002923 18698430

79. Wan H, Perez DR. Amino Acid 226 in the Hemagglutinin of H9N2 Influenza Viruses Determines Cell Tropism and Replication in Human Airway Epithelial Cells. J Virol 2007;81:5181–91. doi: 10.1128/JVI.02827-06 17344280

80. Tada T, Suzuki K, Sakurai Y, Kubo M, Okada H, Itoh T, et al. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens. J Virol 2011;85:1834–46. doi: 10.1128/JVI.01648-10 21123376

81. Nao N, Kajihara M, Manzoor R, Maruyama J, Yoshida R, Muramatsu M, et al. A Single Amino Acid in the M1 Protein Responsible for the Different Pathogenic Potentials of H5N1 Highly Pathogenic Avian Influenza Virus Strains. PloS One 2015;10:e0137989. doi: 10.1371/journal.pone.0137989 26368015

82. Smeenk CA, Wright KE, Burns BF, Thaker AJ, Brown EG. Mutations in the hemagglutinin and matrix genes of a virulent influenza virus variant, A/FM/1/47-MA, control different stages in pathogenesis. Virus Res 1996;44:79–95. doi: 10.1016/0168-1702(96)01329-9 8879138

83. Brown EG, Bailly JE. Genetic analysis of mouse-adapted influenza A virus identifies roles for the NA, PB1, and PB2 genes in virulence. Virus Res 1999;61:63–76. doi: 10.1016/s0168-1702(99)00027-1 10426210

84. Ilyushina NA, Govorkova EA, Webster RG. Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. Virology 2005;341:102–6. doi: 10.1016/j.virol.2005.07.003 16081121

85. Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, et al. A Single-Amino-Acid Substitution in the NS1 Protein Changes the Pathogenicity of H5N1 Avian Influenza Viruses in Mice. J Virol 2008;82:1146–54. doi: 10.1128/JVI.01698-07 18032512

86. Li Z, Jiang Y, Jiao P, Wang A, Zhao F, Tian G, et al. The NS1 Gene Contributes to the Virulence of H5N1 Avian Influenza Viruses. J Virol 2006;80:11115–23. doi: 10.1128/JVI.00993-06 16971424

87. Peacock TP, Harvey W, Sadeyen J-R, Reeve R, Iqbal M. The molecular basis of antigenic variation among A(H9N2) avian influenza viruses. BioRxiv 2018.

88. Noshi T, Kitano M, Taniguchi K, Yamamoto A, Omoto S, Baba K, et al. In vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit. Antiviral Res 2018;160:109–17. doi: 10.1016/j.antiviral.2018.10.008 30316915

89. Omoto S, Speranzini V, Hashimoto T, Noshi T, Yamaguchi H, Kawai M, et al. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Sci Rep 2018;8:9633. doi: 10.1038/s41598-018-27890-4 29941893

90. Jonas M, Sahesti A, Murwijati T, Lestariningsih CL, Irine I, Ayesda CS, et al. Identification of avian influenza virus subtype H9N2 in chicken farms in Indonesia. Prev Vet Med 2018;159:99–105. doi: 10.1016/j.prevetmed.2018.09.003 30314797

91. Pu J, Sun H, Qu Y, Wang C, Gao W, Zhu J, et al. M Gene Reassortment in H9N2 Influenza Virus Promotes Early Infection and Replication: Contribution to Rising Virus Prevalence in Chickens in China. J Virol 2017;91.

92. Hao X, Wang X, Hu J, Gu M, Wang J, Deng Y, et al. The PB2 and M genes of genotype S H9N2 virus contribute to the enhanced fitness of H5Nx and H7N9 avian influenza viruses in chickens. Virology 2019.

93. Chrzastek K, Lee D, Gharaibeh S, Zsak A, Kapczynski DR. Characterization of H9N2 avian influenza viruses from the Middle East demonstrates heterogeneity at amino acid position 226 in the hemagglutinin and potential for transmission to mammals. Virology 2018;518:195–201. doi: 10.1016/j.virol.2018.02.016 29524835

94. World Health Organization. Influenza: Candidate vaccine viruses for A(H9N2) 2019.

95. Xu C, Ye H, Qiu W, Lin H, Chen Y, Zhang H, et al. Phylogenetic classification of hemagglutinin gene of H9N2 avian influenza viruses isolated in China during 2012–2016 and evaluation of selected candidate vaccine strains. Poult Sci 2018;97:3023–30. doi: 10.3382/ps/pey154 29931183

96. Belshe RB, Smith MH, Hall CB, Betts R, Hay AJ. Genetic basis of resistance to rimantadine emerging during treatment of influenza virus infection. J Virol 1988;62:1508–1512. 3282079

97. Suttie A, Karlsson EA, Deng Y-M, Horm SV, Yann S, Tok S, et al. Influenza A(H5N1) viruses with A(H9N2) single gene (matrix or PB1) reassortment isolated from Cambodian live bird markets. Virology 2018;523:22–6. doi: 10.1016/j.virol.2018.07.028 30075357

98. Dong G, Peng C, Luo J, Wang C, Han L, Wu B, et al. Adamantane-Resistant Influenza A Viruses in the World (1902–2013): Frequency and Distribution of M2 Gene Mutations. PLOS ONE 2015;10:e0119115. doi: 10.1371/journal.pone.0119115 25768797

Článek vyšel v časopise


2019 Číslo 12