Aortic pressure and forward and backward wave components in children, adolescents and young-adults: Agreement between brachial oscillometry, radial and carotid tonometry data and analysis of factors associated with their differences

Autoři: Agustina Zinoveev aff001;  Juan M. Castro aff001;  Victoria García-Espinosa aff001;  Mariana Marin aff001;  Pedro Chiesa aff002;  Daniel Bia aff001;  Yanina Zócalo aff001
Působiště autorů: Departamento de Fisiología, Facultad de Medicina, Centro Universitario de Investigación, Innovación y Diagnóstico Arterial (CUiiDARTE), Universidad de la República, Montevideo, Uruguay aff001;  Servicio de Cardiología Pediátrica, Centro Hospitalario Pereira-Rossell, ASSE - Facultad de Medicina, Universidad de la República, Montevideo, Uruguay aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


Non-invasive devices used to estimate central (aortic) systolic pressure (cSBP), pulse pressure (cPP) and forward (Pf) and backward (Pb) wave components from blood pressure (BP) or surrogate signals differ in arteries studied, techniques, data-analysis algorithms and/or calibration schemes (e.g. calibrating to calculated [MBPc] or measured [MBPosc] mean pressure). The aims were to analyze, in children, adolescents and young-adults (1) the agreement between cSBP, cPP, Pf and Pb obtained using carotid (CT) and radial tonometry (RT) and brachial-oscillometry (BOSC); and (2) explanatory factors for the differences between approaches-data and between MBPosc and MBPc.1685 subjects (mean/range age: 14/3-35 y.o.) assigned to three age-related groups (3–12; 12–18; 18–35 y.o.) were included. cSBP, cPP, Pf and Pb were assessed with BOSC (Mobil-O-Graph), CT and RT (SphygmoCor) records. Two calibration schemes were considered: MBPc and MBPosc for calibrations to similar BP levels. Correlation, Bland-Altman tests and multiple regression models were applied. Systematic and proportional errors were observed; errors´ statistical significance and values varied depending on the parameter analyzed, methods compared and group considered. The explanatory factors for the differences between data obtained from the different approaches varied depending on the methods compared. The highest cSBP and cPP were obtained from CT; the lowest from RT. Independently of the technique, parameter or age-group, higher values were obtained calibrating to MBPosc. Age, sex, heart rate, diastolic BP, body weight or height were explanatory factors for the differences in cSBP, cPP, Pf or Pb. Brachial BP levels were explanatory factors for the differences between MBPosc and MBPc.

Klíčová slova:

Adolescents – Anthropometry – Blood pressure – Graphs – Heart rate – Hypertension – Instrument calibration – Systolic pressure


1. McEniery CM, Cockcroft JR, Roman MJ, Franklin S, Wilkinson IB. Central blood pressure: current evidence and clinical importance. EurHeartJ.2014;35:1719–1725.

2. Westerhof BE, Guelen I, Westerhof N, Karemaker JM, Avolio A. Quantification of wave reflection in the human aorta from pressure alone. J Hypertens 2006;48:595–601.

3. Weber T, Wassertheurer S, Rammer M, Haiden A, Hametner B, Eber B. Wave reflections, assessed with a novel method for pulse wave separation, are associated with end-organ damage and clinical outcomes. J Hypertens 2012;60: 534–541.

4. Cheng H, Chuag S, Sung S, Yu W, Pearson A, Lakatta E, et al. Derivation and validation of diagnostic thresholds for central blood pressure measurements based on long-term cardiovascular risks. J Am Coll Cardiol 2013;62(19): 1780–1787.

5. Cooper LL, Rong J, Benjamin EJ, Larson MG, Levy D, Vita JA, et al. Components of hemodynamic load and cardiovascular events: the Framingham Heart Study. Circulation 2015;131(4):354–61 doi: 10.1161/CIRCULATIONAHA.114.011357 25416177

6. Sibiya MJ, Woodiwiss AJ, Booysen HL, Raymond A, Millen AM, Maseko MJ, et al. eflected rather than forward wave pressures account for brachial pressure-independent relations between aortic pressure and end-organ changes in an African community. J Hypertens 2015;33(10):2083–2090 doi: 10.1097/HJH.0000000000000682 26237557

7. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 2010;121:505–511. doi: 10.1161/CIRCULATIONAHA.109.886655 20083680

8. Papaioannou TG, Karageorgopoulou TD, Sergentanis TN, Protogerou AD, Psaltopoulou T, Sharman JE, et al. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens 2016;34(7): 1237–1248. doi: 10.1097/HJH.0000000000000921 27136312

9. Sharman JE, Avolio AP, Baulmann J, Benetos A, Blacher J, Blizzard CL, et al. Validation of non-invasive central blood pressure devices: ARTERY Society task force consensus statement on protocol standardization. Eur Heart J 2017;0:1–10.

10. Zocalo Y, Castro JM, Garcia-Espinosa V, Curcio S, Chiesa P, Giachetto G, et al. Forward and backward aortic components and reflection indexes in children and adolescents: determinants and role in high pressure states. Curr Hypertens Rev 2018;14(2):137–153. doi: 10.2174/1573402114666180413113910 29651954

11. Milne L, Keehn L, Guilcher A, Reidy JF, Karunanithy N, Rosenthal E,et al. Central aortic blood pressure from ultrasound wall-tracking of thecarotid artery in children: comparison with invasive measurements and radial tonometry. Hypertension 2015;65(5):1141–1146. doi: 10.1161/HYPERTENSIONAHA.115.05196 25824246

12. Bhat DP, Gupta P, Aggarwal S. Elevated aortic augmentation index in children following fontan palliation: evidence of stiffer arteries? Pediatr Cardiol 2015;36(6):1232–1238 doi: 10.1007/s00246-015-1151-3 25832849

13. Nichols W, O’Rourke M, Vlachopoulos C. McDonaldʼs Blood Flow in Arteries. Sixth. London: Hodder Arnold; 2011.

14. García-Espinosa V, Curcio S, Marotta M, Castro JM, Arana M, Peluso G, et al. Changes in central aortic pressure levels, wave components and determinants associated with high peripheral blood pressure states in childhood: analysis of hypertensive phenotype. Pediatr Cardiol. 2016;37(7):1340–50. doi: 10.1007/s00246-016-1440-5 27388527

15. Curcio S, García-Espinosa V, Castro JM, Peluso G, Marotta M, Arana M, et al. High blood pressure states in children, adolescents, and young adults associate accelerated vascular aging, with a higher impact in females' arterial properties. Pediatr Cardiol 2017;38(4):840–852. doi: 10.1007/s00246-017-1591-z 28289784

16. Castro JM, García-Espinosa V, Zinoveev A, Marin M, Severi C, Chiesa P, et al. Arterial structural and functional characteristics at end of early childhood and beginning of adulthood: impact of body size gain during early, intermediate, late and global growth. J Cardiovasc Dev Dis. 2019;6(3). pii: E33.

17. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl. 2006;450:76–851. 16817681

18. WHO Global recommendations on physical activity for health. World Health Organization. 2010.

19. Lurbe E, Agabati-Rosei E, Cruickshank K, Dominiczak A, Erdine S, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. JHypertens 2016;34(1): 1–34.

20. ESH/ESC Task Force for the Management of Arterial Hypertension. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens 2013;31(10):1925–38. doi: 10.1097/HJH.0b013e328364ca4c 24107724

21. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–e115. doi: 10.1161/HYP.0000000000000065 29133356

22. Lumley T, Diehr P, Emerson S, Chen L. The importance of the normality assumption in large public health data sets. Annu Rev Public Health 2002;23:151–69. doi: 10.1146/annurev.publhealth.23.100901.140546 11910059

23. Shih YT, Cheng HM, Sung SH, Hu WC, Chen CH. Quantification of the calibration error in the transfer function-derived central aortic blood pressures. Am J Hypertens 2011;24(12):1312–7. doi: 10.1038/ajh.2011.146 21850061

24. Picone DS, Schultz MG, Otahal P, Aakhus S, Al-Jumaily AM, Black JA, et al. Accuracy of Cuff-Measured Blood Pressure: Systematic Reviews and Meta-Analyses. J Am Coll Cardiol 2017;70(5):572–586. doi: 10.1016/j.jacc.2017.05.064 28750701

25. Smulyan H, Sheehe PR, Safar ME. A preliminary evaluation of the mean arterial pressure as measured by cuff oscillometry. Am J Hypertens 2008;21(2): 166–171.

26. Protogerou AD, Argyris AA, Papaioannou TG, Kollias GE, Konstantonis GD, Nasothimiou E, et al. Left-ventricular hypertrophy is associated better with 24-h aortic pressure than 24-h brachial pressure in hypertensive patients: the SAFAR study. J Hypertens 2014;32:1805–1814. doi: 10.1097/HJH.0000000000000263 24999798

27. Negishi K, Yang H, Wang Y, Nolan MT, Negishi T, Pathan F, et al. Importance of calibration method in central blood pressure for cardiac structural abnormalities. Am J Hypertens 2016;29(9):1070–6. doi: 10.1093/ajh/hpw039 27085076

28. Wassertheurer S, Baumann M. Assessment of systolic aortic pressure and its association to all cause mortality critically depends on waveform calibration. J Hypertens 2015;33: 1884–1888. doi: 10.1097/HJH.0000000000000633 26147388

29. Díaz A, Bia D, Zócalo Y. Impact of methodological and calibration approach on the association of central and peripheral systolic blood pressure with cardiac structure and function in children, adolescents and adults. High Blood Press Cardiovasc Prev. 2019 Oct 30. doi: 10.1007/s40292-019-00346-0 31667753

30. Wassertheurer S, Hametner B, Sharman J, Weber T. Systolic blood pressure amplification and waveform calibration. Hypertens Res 2017;40(5):518. doi: 10.1038/hr.2016.181 28100917

31. Wassertheurer S, Hametner B, Mayer CC, Hafez A, Negishi K, Papaioannou TG, et al. Aortic systolic pressure derived with different calibration methods: associations to brachial systolic pressure in the general population. Blood Press Monit 2018;23(3):134–140. 29608470

32. Mitchell GF. Does measurement of central blood pressure have treatment consequences in the clinical praxis? Curr Hypertens Rep 2015;17(8):66 doi: 10.1007/s11906-015-0573-x 26142539

33. Nakagomi A, Okada S, Shoji T, Kobayashi Y. Crucial effect of calibration methods on the association between central pulsatile indices and coronary atherosclerosis. Am J Hypertens 2017;30:24–27. doi: 10.1093/ajh/hpw118 27633555

34. Narayan O, Casan J, Szarski M, Dart AM, Meredith IT, Cameron JD. Estimation of central aortic blood pressure: a systematic meta-analysis of available techniques. J Hypertens 2014;32(9):1727–40. doi: 10.1097/HJH.0000000000000249 24937639

35. Gao M, Rose WC, Fetics B, Kass DA, Chen CH, Mukkamala R. A simple adaptive transfer function for deriving the central blood pressure waveform from a radial blood pressure waveform. Sci Rep. 2016; 6:33230. doi: 10.1038/srep33230 27624389

36. Kiers HD, Hofstra JM, Wetzels JF. Oscillometric blood pressure measurements: differences between measured and calculated mean arterial pressure. Neth J Med. 2008;66(11):474–9. 19075313

37. Bos WJ, Verrij E, Vincent HH, Westerhof BE, Parati G, van Montfrans GA. How to assess mean blood pressure properly at the brachial artery level. J Hypertens. 2007;25(4):751–5. doi: 10.1097/HJH.0b013e32803fb621 17351365

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden