Feature identification in time-indexed model output

Autoři: Justin Shaw aff001;  Marek Stastna aff001
Působiště autorů: Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0225439


We present a method for identifying features (time periods of interest) in data sets consisting of time-indexed model output. The method is used as a diagnostic to quickly focus the attention on a subset of the data before further analysis methods are applied. Mathematically, the infinity norm errors of empirical orthogonal function (EOF) reconstructions are calculated for each time output. The result is an EOF reconstruction error map which clearly identifies features as changes in the error structure over time. The ubiquity of EOF-type methods in a wide range of disciplines reduces barriers to comprehension and implementation of the method. We apply the error map method to three different Computational Fluid Dynamics (CFD) data sets as examples: the development of a spontaneous instability in a large amplitude internal solitary wave, an internal wave interacting with a density profile change, and the collision of two waves of different vertical mode. In all cases the EOF error map method identifies relevant features which are worthy of further study.

Klíčová slova:

Built structures – Covariance – Eigenvalues – El Niño-Southern Oscillation – Fluid dynamics – Fluid flow – principal component analysis – Singular value decomposition


1. Kerschen G, Golinval JC, Vakakis AF, Bergman LA. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview. Nonlinear Dynamics. 2005;41(1-3):147–169. doi: 10.1007/s11071-005-2803-2

2. Kaihatu JM, Handler RA, Marmorino GO, Shay LK. Empirical orthogonal function analysis of ocean surface currents using complex and real-vector methods. Journal of Atmospheric and Oceanic Technology. 1998;15(4):927–941. doi: 10.1175/1520-0426(1998)015%3C0927:EOFAOO%3E2.0.CO;2

3. Casagrande G, Stephan Y, Warn Varnas AC, Folegot T. A Novel Empirical Orthogonal Function (EOF)-Based Methodology to Study the Internal Wave Effects on Acoustic Propagation. IEEE Journal of Oceanic Engineering. 2011;36(4):745–759. doi: 10.1109/JOE.2011.2161158

4. Kim KY, Wu Q. A comparison study of EOF techniques: Analysis of nonstationary data with periodic statistics. Journal of Climate. 1999;12(1):185–199. doi: 10.1175/1520-0442(1999)012%3C0185:ACSOET%3E2.0.CO;2

5. Hannachi A, Jolliffe I, Stephenson D. Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology. 2007;27(May):1119–1152. doi: 10.1002/joc.1499

6. Pearson K. Principal Components Analysis. The London, Edinburgh and Dublin Philosophical Magazine and Journal. 1901;6(2):566.

7. Holmes P, Lumley J, Berkooz G, Rowley C. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Second edi ed. Cambridge: Cambridge University Press; 2012.

8. Abdi H, Williams LJ. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics. 2010;2(4):433–459. doi: 10.1002/wics.101

9. Zhang Y, Wallace JM, Battisti DS. ENSO-like interdecadal variability: 1900-93. Journal of Climate. 1997;10(5):1004–1020. doi: 10.1175/1520-0442(1997)010%3C1004:ELIV%3E2.0.CO;2

10. Hurrell JW, Deser C. North Atlantic climate variability: The role of the North Atlantic Oscillation. Journal of Marine Systems. 2010;79(3-4):231–244. doi: 10.1016/j.jmarsys.2009.11.002

11. Thompson DWJ, Wallace JM. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters. 1998;25(9):1297–1300. doi: 10.1029/98GL00950

12. Zhang Q, Liu Y, Wang S. The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition. Journal of Fluids and Structures. 2014;49:53–72. doi: 10.1016/j.jfluidstructs.2014.04.002

13. Kolář V. Vortex identification: New requirements and limitations. International Journal of Heat and Fluid Flow. 2007;28(4):638–652. doi: 10.1016/j.ijheatfluidflow.2007.03.004

14. Sudharsan M, Brunton SL, Riley JJ. Lagrangian coherent structures and inertial particle dynamics. Physical Review E. 2016;93(3). doi: 10.1103/PhysRevE.93.033108 27078448

15. Sulman MHM, Huntley HS, Lipphardt BL, Kirwan AD. Leaving flatland: Diagnostics for Lagrangian coherent structures in three-dimensional flows. Physica D: Nonlinear Phenomena. 2013;258:77–92. doi: 10.1016/j.physd.2013.05.005

16. Hadjighasem A, Karrasch D, Teramoto H, Haller G. Spectral-clustering approach to Lagrangian vortex detection. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics. 2016;93(6).

17. Froyland G, Padberg-Gehle K. A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data. Chaos. 2015;25(8):087406. doi: 10.1063/1.4926372 26328577

18. Schlueter-Kuck KL, Dabiri JO. Identification of individual coherent sets associated with flow trajectories using coherent structure coloring. Chaos. 2017;27(9). doi: 10.1063/1.4993862 28964141

19. Hadjighasem A, Farazmand M, Blazevski D, Froyland G, Haller G. A critical comparison of Lagrangian methods for coherent structure detection. Chaos. 2017;27(5). doi: 10.1063/1.4982720 28576102

20. Mezić I. Analysis of Fluid Flows via Spectral Properties of the Koopman Operator. Annual Review of Fluid Mechanics. 2013;45(1):357–378. doi: 10.1146/annurev-fluid-011212-140652

21. Schmid PJ. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics. 2010;656(4):5–28. doi: 10.1017/S0022112010001217

22. Semeraro O, Bellani G, Lundell F. Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes. Experiments in Fluids. 2012;53(5):1203–1220. doi: 10.1007/s00348-012-1354-9

23. Rowley CW, Colonius T, Murray RM. Model reduction for compressible flows using POD and Galerkin projection. Physica D. 2004;189:115–129. doi: 10.1016/j.physd.2003.03.001

24. Rowley CW, Dawson STM. Model Reduction for Flow Analysis and Control. Annual Review of Fluid Mechanics. 2017;49(1):387–417. doi: 10.1146/annurev-fluid-010816-060042

25. Kutz JN. Data-Driven Modeling & Scientific Computation: Methods for Complex Systems and Big Data. Oxford University Press; 2013.

26. Ipsen ICF. Numerical Matrix Analysis. SIAM; 2009.

27. Trefethen LN, Bau D. Numerical linear algebra. vol. 50. Siam; 1997.

28. Subich C, Lamb KG, Stast. Simulation of the Navier–Stokes equations in three dimensions with a spectral collocation method. International Journal for Numerical Methods in Fluids. 2013;73:103–129. doi: 10.1002/fld.3788

29. Xu C, Stastna M, Deepwell D. Spontaneous instability in internal solitary-like waves. Physical Review Fluids. 2019;4(1):14805. doi: 10.1103/PhysRevFluids.4.014805

30. Lamb KG, Farmer D. Instabilities in an Internal Solitary-like Wave on the Oregon Shelf. Journal of Physical Oceanography. 2011;41(1):67–87. doi: 10.1175/2010JPO4308.1

31. Fructus D, Carr M, Grue J, Jensen A, Davies PA. Shear-induced breaking of large internal solitary waves. Journal of Fluid Mechanics. 2009;620:1–29. doi: 10.1017/S0022112008004898

32. Lamb KG. A numerical investigation of solitary internal waves with trapped cores formed via shoaling. Journal of Fluid Mechanics. 2002;451:109–144. doi: 10.1017/S002211200100636X

33. Stastna M, Olsthoorn J, Baglaenko A, Coutino A. Strong mode-mode interactions in internal solitary-like waves. Physics of Fluids. 2015;27(4):46604. doi: 10.1063/1.4919115

34. Xiong Z, Zhang Q, Platt A, Liao W, Shi X, de los Campos G, et al. OCMA: Fast, Memory-Efficient Factorization of Prohibitively Large Relationship Matrices. G3 Genes|Genomes|Genetics. 2019;9(1):13–19. doi: 10.1534/g3.118.200908 30482799

35. Haidar A, Kabir K, Fayad D, Tomov S, Dongarra J. Out of memory SVD solver for big data. 2017 IEEE High Performance Extreme Computing Conference, HPEC 2017. 2017;(Icl).

36. Shaw J, Stastna M, Coutino A, Walter RK, Reinhardt E. Feature identification in time series data sets. Heliyon. 2019;5. doi: 10.1016/j.heliyon.2019.e01708

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden