Early changes in pulmonary function and intrarenal haemodynamics and the correlation between these sets of parameters in patients with T2DM


Autoři: He Tai aff001;  Xiao-lin Jiang aff003;  Jin-song Kuang aff004;  JJ JiaJia Yu aff001;  Ye-tao Ju aff001;  Wen-cong Cao aff001;  Wei Chen aff001;  Xin-yue Cui aff001;  Li-de Zhang aff003;  Xin Fu aff001;  Lian-qun Jia aff001;  Yi Zhang aff005
Působiště autorů: Key Laboratory of Ministry of Education for Traditional Chinese Medicine Visera-State Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, China aff001;  Department of Endocrinology and Metabolic, Liaoning Provincial Corps Hospital of Chinese People’s Armed Police Forces, Shenyang, China aff002;  Chinese and Western Medical Association College, Liaoning University of Traditional Chinese Medicine aff003;  Department of Endocrinology and Metabolic, Shenyang the Fourth Hospital of People, Shenyang, China aff004;  Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224923

Souhrn

Purpose

The main objectives of this study were to assess the early changes in pulmonary function and intrarenal haemodynamics and to determine the correlation between pulmonary function and intrarenal haemodynamics in patients with type 2 diabetes mellitus (T2DM).

Methods

96 patients with T2DM (diabetes group) without diabetes kidney disease (DKD) and 33 healthy subjects (control group) were enrolled in studies intended to assess the early changes in pulmonary function and intrarenal haemodynamics associated with diabetes, as well as to determine the correlation between pulmonary function and intrarenal haemodynamics.

Results

Pulmonary functional parameters were negatively correlated with HbA1c levels and diabetes duration (P< 0.05). Moreover, renal functional parameters were positively correlated with HbA1c levels and diabetes duration (P<0.05). Additionally, pulmonary functional parameters were negatively correlated with renal functional parameters (P<0.05). Multiple linear regression analysis of the relationship between pulmonary functional parameters and the bilateral kidney arterial resistivity index (RI) showed that all the pulmonary functional parameters were significantly correlated with the arterial RI (P< 0.05).

Conclusions

Patients displayed changes in pulmonary function and intrarenal haemodynamics during the preclinical stages of DKD. Regulating glycaemia may improve intrarenal haemodynamics in the bilateral interlobular renal arteries. Moreover, during the preclinical stages of DKD, the right kidney RI is a effective predictor of early changes in pulmonary function in adult T2DM patients.

Trial registration

ClinicalTrials.gov (NCT02798198); registered 8 June 2016.

Klíčová slova:

Glomerular filtration rate – Kidneys – Pulmonary function – Renal system


Zdroje

1. Ma Ronald CW, Chan Juliana CN. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann N Y Acad Sci 2013 Apr; 1281: 64–91. doi: 10.1111/nyas.12098 23551121

2. Lin CH, Chang DM, Wu DJ, Peng HY, Chuang LM. Assessment of Blood Glucose Regulation and Safety of Resistant Starch Formula-Based Diet in Healthy Normal and Subjects With Type 2 Diabetes. Medicine 2015, 94 (33): e1332. doi: 10.1097/MD.0000000000001332 26287417

3. Murea M, Ma L, Freedman BI. Genetic and environmental factors associated with type 2 diabetes and diabetes vascular complications. Rev Diabet Stud 2012; 9 (1): 6–22. doi: 10.1900/RDS.2012.9.6 22972441

4. Yamagishi S, Fukami K, Matsui T. Crosstalk between advanced glycation end products (AGEs)-receptor RAGE axis and dipeptidyl peptidase-4-incretin system in diabetes vascular complications. Cardiovascular Diabetology 2015; 13;14: 2. doi: 10.1186/s12933-015-0176-5 25582643

5. Kodolova IM, Lysenko IV, Saltykov BB. Change in the lung in diabetes mellitus. Arkh Pathol 1982, 44(7): 35–40. 7125937

6. Kwon CH, Rhee EJ, Song JU, Kim JT, Kwag HJ, Sung KC. Reduced lung function is independently associated with increased risk of type 2 diabetes in Korean men. Cardiovasc Diabetol 2012 Apr 24;11:38. doi: 10.1186/1475-2840-11-38 22524685

7. Goebel W, Lieb WE, Ho A, Sergott RC, Farhoumand R, Grehn F. Color Doppler imaging: a new technique to assess orbital blood flow in patients with diabetes retinopathy. Invest Ophthalmol Vis Sci 1995; 36 (5): 864–870. 7706034

8. Dimitrova G, Kato S, Fukushima H, Yamashita H. Circulatory parameters in the retrobulbar central retinal artery and vein of patients with diabetesand medically treated systemic hypertension. Graefes Arch Clin Exp Ophthalmol 2009; 247 (1): 53–58. doi: 10.1007/s00417-008-0925-1 18766369

9. Tublin ME, Bude RO, Platt JF. The resistive index in renal Doppler sonography: where do we stand? AJR Am J Roentgenol 2003;180 (4): 885–887. doi: 10.2214/ajr.180.4.1800885 12646425

10. American Diabetes Association. Standards of medical care in diabetes 2007. Diabetes Care 2011; 34 (Suppl. 1): S11–S61. doi: 10.2337/dc07-S004 17192377

11. Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis 2008; 51 (5): 395–406. doi: 10.1053/j.ajkd.2007.11.018 18295055

12. Frauchiger B, Nussbaumer P, Hugentobler M, Staub D. Duplex sonographic registration of age and diabetes-related loss of renal vasodilatatory response to nitroglycerine. Nephrol Dial Transplant 2000;15 (6): 827–832. doi: 10.1093/ndt/15.6.827 10831635

13. Veglio F, Frascisco M, Melchio R, Provera E, Rabbia F, Oliva S, et al. Assessment of renal resistance index after captopril test by Doppler in essential and renovascular hypertension. Kidney Int 1995; 48 (5): 1611–1616. doi: 10.1038/ki.1995.455 8544422

14. Lukashevich V, Del Prato S, Araga M, Kothny W. Efficacy and safety of vildagliptin in patients with type 2 diabetes mellitus inadequately controlled with dual combination of metformin and sulphonylurea. Diabetes Obes Metab 2014; 16 (5): 403–409. doi: 10.1111/dom.12229 24199686

15. Prabhu M, Kakhandaki A, Chandra KR, Dinesh MB. A Hospital Based Study Regarding Awareness of Association Between Glycosylated Haemoglobin and Severity of Diabetes Retinopathy in Type 2 Diabetes Individuals. J Clin Diagn Res 2016; 10(1): NC01–4. doi: 10.7860/JCDR/2016/15834.7014 26894100

16. Cavan DA, Parkes A, O’Donnell MJ, Freeman W, Cayton RM. Lung function and diabetes. Respir Med 1991; 85 (3): 257–258 1882118

17. Hsia CC, Raskin P. Lung function changes related to diabetes mellitus. Diabetes Technol Ther. 2007; 9 (Suppl 1): S73–S82. doi: 10.1089/dia.2007.0227 17563307

18. Barnes PJ. The role of inflammation and anti-inflammatory medication in asthma. Respir Med 2002; 96 (Suppl. A): S9 –S15. 11858564

19. Niranjan V, McBrayer DG, Ramirez LC, Raskin P, Hsia CC. Glycemic control and cardiopulmonary function in patients with insulin-dependent diabetes mellitus. Am J Med 1997; 103 (6): 504–513. doi: 10.1016/s0002-9343(97)00251-9 9428834

20. Davis TM, Knuiman M, Kendall P, Vu H, Davis WA. Reduced pulmonary function and its associations in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Res Clin Pract 2000; 50 (2): 153–159. doi: 10.1016/s0168-8227(00)00166-2 10960726

21. Lange P, Groth S, Kastrup J, Mortensen J, Appleyard M, Nyboe J, et al. Diabetes mellitus, plasma glucose and lung function in a cross-sectional population study. Eur Respir J 1989; 2 (1): 14–19. 2651148

22. Miller JA. Impact of hyperglycemia on the renin angiotensin system in early human type 1 diabetes mellitus. J Am Soc Nephrol 1999; 10 (8): 1778–1785. 10446946

23. Taniwaki H, Ishimura E, Kawagishi T, Matsumoto N, Hosoi M, Emoto M, et al. Intrarenal hemodynamic changes after captopril test in patients with type 2 diabetes: a duplex Doppler sonography study. Diabetes Care 2003; 26 (1): 132–137. doi: 10.2337/diacare.26.1.132 12502669

24. Pelliccia P, Savino A, Cecamore C, Primavera A, Schiavone C, Chiarelli F. Early Changes in Renal Hemodynamics in Children with Diabetes: Doppler Sonographic Findings. J Clin Ultrasound 2008; 36 (6): 335–340. doi: 10.1002/jcu.20457 18361467

25. Matsumoto N, Ishimura E, Taniwaki H, Emoto M, Shoji T, Kawagishi T, et al. Diabetes mellitus worsens intrarenal hemodynamic abnormalities in non-dialyzed patients with chronic renal failure. Nephron 2000; 86 (1): 44–51. doi: 10.1159/000045711 10971152

26. Ellis EN, Warady BA, Wood EG, Hassanein R, Richardson WP, Lane PH, et al. Renal structural-functional relationships in early diabetes mellitus. Pediatr Nephrol 1997; 11 (5): 584–587. doi: 10.1007/s004670050342 9323284

27. Ohta Y, Fujii K, Arima H, Matsumura K, Tsuchihashi T, Tokumoto M, et al. Increased renal resistive index in atherosclerosis and diabetes nephropathy assessed by Doppler sonography. J Hypertens 2005;23 (10):1905–1910. doi: 10.1097/01.hjh.0000181323.44162.01 16148615

28. Kuzmić AC, Brkljacić B, Ivanković D, Galesić K. Doppler sonographic renal resistive index in healthy children. Eur Radiol 2000;10 (10): 1644–1648. doi: 10.1007/s003300000466 11044940


Článek vyšel v časopise

PLOS One


2019 Číslo 12