N-acetyl cysteine attenuates oxidative stress and glutathione-dependent redox imbalance caused by high glucose/high palmitic acid treatment in pancreatic Rin-5F cells


Autoři: Arwa Alnahdi aff001;  Annie John aff001;  Haider Raza aff001
Působiště autorů: Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226696

Souhrn

Elevated levels of glucose and fatty acids are the main characteristics of diabetes, obesity and other metabolic disorders, associated with increased oxidative stress, mitochondrial dysfunction and inflammation. Once the primary pathogenesis of diabetes is established, which is potentially linked to both genetic and environmental factors, hyperglycemia and hyperlipidemia exert further destructive and/or toxic effects on β-cells. The concept of glucolipotoxicity has arisen from the combination of deleterious effects of chronic elevation of glucose and fatty acid levels on pancreatic β- cell function and/or survival. Though numerous studies have been conducted in this field, the exact molecular mechanisms and causative factors still need to be established. The aim of the present work was to elucidate the molecular mechanisms of oxidative stress, and inflammatory/antioxidant responses in the presence of high concentrations of glucose/fatty acids in a cell-culture system using an insulin-secreting pancreatic β-cell line (Rin-5F) and to study the effects of the antioxidant, N-acetyl cysteine (NAC) on β-cell toxicity. In our study, we investigated the molecular mechanism of cytotoxicity in the presence of high glucose (up to 25 mM) and high palmitic acid (up to 0.3 mM) on Rin-5F cells. Our results suggest that the cellular and molecular mechanisms underlying β-cell toxicity are mediated by increased oxidative stress, imbalance of redox homeostasis, glutathione (GSH) metabolism and alterations in inflammatory responses. Pre-treatment with NAC attenuated oxidative stress and alterations in GSH metabolism associated with β-cells cytotoxicity.

Klíčová slova:

Catalases – Fatty acids – Glucose – Glucose metabolism – Inflammation – Nitric oxide – Oxidative stress – Superoxide dismutase


Zdroje

1. Flock MR, Kris-Etherton PM. Diverse physiological effects of long-chain saturated fatty acids: implications for cardiovascular disease. Curr Opin Clin Nutr Metab Care. 2013; 16: 133–140. doi: 10.1097/MCO.0b013e328359e6ac 23037905

2. Savary S, Trompier D, Andréoletti P, Le Borgne F, Demarquoy J, Lizard G. Fatty acids—induced lipotoxicity and inflammation. Curr Drug Metab. 2012; 13: 1358–1370. doi: 10.2174/138920012803762729 22978392

3. Masi LN, Rodrigues AC, Curi R. Fatty acids regulation of inflammatory and metabolic genes. Curr Opin Clin Nutr Metab Care. 2013; 16: 418–424. doi: 10.1097/MCO.0b013e32836236df 23739628

4. Ryu TY, Park J, Scherer PE. Hyperglycemia as a risk factor for cancer progression. Diabetes Metab J. 2014; 38: 330–336. doi: 10.4093/dmj.2014.38.5.330 25349819

5. Shimo N, Matsuoka T, Miyatsuka T, Takebe S, Tochino Y, Takahara M, et al. Short-term selective alleviation of glucotoxicity and lipotoxicity ameliorates the suppressed expression of key β-cell factors under diabetic conditions. Biochem Biophys Res Commun. 2015; 467: 948–954. doi: 10.1016/j.bbrc.2015.10.038 26471305

6. Gleason CE, Gonzalez M, Harmon JS, Robertson RP. Determinants of glucose toxicity and its reversibility in the pancreatic islet beta-cell line, HIT-T15. Am J Physiol Endocrinol Metab. 2000; 279: E997–1002. doi: 10.1152/ajpendo.2000.279.5.E997 11052953

7. Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes. 1995; 44: 863–870. doi: 10.2337/diab.44.8.863 7621989

8. Unger RH, Grundy S. Hyperglycaemia as an inducer as well as a consequence of impaired islet cell function and insulin resistance: implications for the management of diabetes. Diabetologia. 1985; 28: 119–121. doi: 10.1007/bf00273856 3888754

9. Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001; 50: 1771–1777. doi: 10.2337/diabetes.50.8.1771 11473037

10. Prentki M, Corkey BE. Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes. 1996; 45: 273–283. doi: 10.2337/diab.45.3.273 8593930

11. Poitout V, Robertson RP. Minireview: secondary β-cell failure in type 2 diabetes-a convergence of glucotoxicity and lipotoxicity. Endocrinology. 2002; 143: 339–342. doi: 10.1210/endo.143.2.8623 11796484

12. El-Assaad W, Buteau J, Peyot M-L, Nolan C, Roduit R, Hardy S, et al. Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology. 2003; 144: 4154–4163. doi: 10.1210/en.2003-0410 12933690

13. Alnahdi A, John A, Raza H. Augmentation of Glucotoxicity, Oxidative Stress, Apoptosis and Mitochondrial Dysfunction in HepG2 Cells by Palmitic Acid. Nutrients. 2019; 11: 1979. doi: 10.3390/nu11091979 31443411

14. Prause M, Christensen DP, Billestrup N, Mandrup-Poulsen T. JNK1 protects against glucolipotoxicity-mediated beta-cell apoptosis. PloS One. 2014; 9: e87067. doi: 10.1371/journal.pone.0087067 24475223

15. Joshi‐Barve S, Barve SS, Amancherla K, Gobejishvili L, Hill D, Cave M, et al. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology. 46: 823–830. doi: 10.1002/hep.21752 17680645

16. Raza H, Prabu SK, John A, Avadhani NG. Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats. Int J Mol Sci. 2011; 12: 3133–3147. doi: 10.3390/ijms12053133 21686174

17. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248–254. doi: 10.1006/abio.1976.9999 942051

18. Raza H, John A. Streptozotocin-induced cytotoxicity, oxidative stress and mitochondrial dysfunction in human hepatoma HepG2 cells. Int J Mol Sci. 2012; 13: 5751–5767. doi: 10.3390/ijms13055751 22754329

19. Raza H, John A, Shafarin J. NAC attenuates LPS-induced toxicity in aspirin-sensitized mouse macrophages via suppression of oxidative stress and mitochondrial dysfunction. PloS One. 2014; 9: e103379. doi: 10.1371/journal.pone.0103379 25075522

20. Raza H, Prabu SK, Robin M-A, Avadhani NG. Elevated mitochondrial cytochrome P450 2E1 and glutathione S-transferase A4-4 in streptozotocin-induced diabetic rats: tissue-specific variations and roles in oxidative stress. Diabetes. 2004; 53: 185–194. doi: 10.2337/diabetes.53.1.185 14693714

21. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974; 249: 7130–7139. 4436300

22. Smith IK, Vierheller TL, Thorne CA. Assay of glutathione reductase in crude tissue homogenates using 5, 5’-dithiobis (2-nitrobenzoic acid). Anal Biochem. 1988; 175: 408–413. doi: 10.1016/0003-2697(88)90564-7 3239770

23. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967; 70: 158–169. 6066618

24. Nahdi AMTA, John A, Raza H. Elucidation of molecular mechanisms of streptozotocin-induced oxidative stress, apoptosis, and mitochondrial dysfunction in Rin-5F pancreatic β-cells. Oxid Med Cell Longev. 2017; 2017: 7054272. doi: 10.1155/2017/7054272 28845214

25. Al-Nahdi AMT, John A, Raza H. Cytoprotective effects of N-acetyl cysteine on streptozotocin- induced oxidative stress and apoptosis in RIN-5F pancreatic β-cells. Cell Physiol Biochem. 2018; 51: 201–216. doi: 10.1159/000495200 30448838

26. Nuttall FQ, Ngo A, Gannon MC. Regulation of hepatic glucose production and the role of gluconeogenesis in humans: is the rate of gluconeogenesis constant? Diabetes Metab Res Rev. 2008; 24: 438–458. doi: 10.1002/dmrr.863 18561209

27. Gerich JE. Control of glycaemia. Baillieres Clin Endocrinol Metab. 1993; 7: 551–586. doi: 10.1016/s0950-351x(05)80207-1 8379904

28. Abdelmagid SA, Clarke SE, Nielsen DE, Badawi A, El-Sohemy A, Mutch DM, et al. Comprehensive profiling of plasma fatty acid concentrations in young healthy Canadian adults. PLoS ONE. 2015; 10. doi: 10.1371/journal.pone.0116195 25675440

29. Ubhayasekera SJKA, Staaf J, Forslund A, Bergsten P, Bergquist J. Free fatty acid determination in plasma by GC-MS after conversion to Weinreb amides. Anal Bioanal Chem. 2013; 405: 1929–1935. doi: 10.1007/s00216-012-6658-3 23307129

30. Miles JM, Wooldridge D, Grellner WJ, Windsor S, Isley WL, Klein S, et al. Nocturnal and postprandial free fatty acid kinetics in normal and type 2 diabetic subjects: effects of insulin sensitization therapy. Diabetes. 2003; 52: 675–681. doi: 10.2337/diabetes.52.3.675 12606508

31. Park E-J, Lee AY, Park S, Kim J-H, Cho M-H. Multiple pathways are involved in palmitic acid-induced toxicity. Food Chem Toxicol. 2014; 67: 26–34. doi: 10.1016/j.fct.2014.01.027 24486139

32. Mangali S, Bhat A, Udumula MP, Dhar I, Sriram D, Dhar A. Inhibition of protein kinase R protects against palmitic acid–induced inflammation, oxidative stress, and apoptosis through the JNK/NF‐kB/NLRP3 pathway in cultured H9C2 cardiomyocytes. J Cell Biochem. 2018; doi: 10.1002/jcb.27643 30259999

33. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016; 15. doi: 10.1186/s12937-016-0186-5 27456681

34. Sekhar RV, McKay SV, Patel SG, Guthikonda AP, Reddy VT, Balasubramanyam A, et al. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care. 2011; 34: 162–167. doi: 10.2337/dc10-1006 20929994

35. Tan KS, Lee KO, Low KC, Gamage AM, Liu Y, Tan G-YG, et al. Glutathione deficiency in type 2 diabetes impairs cytokine responses and control of intracellular bacteria. J Clin Invest. 2012; 122: 2289–2300. doi: 10.1172/JCI57817 22546856

36. Hakki Kalkan I, Suher M. The relationship between the level of glutathione, impairment of glucose metabolism and complications of diabetes mellitus. Pak J Med Sci. 2013; 29: 938–942. doi: 10.12669/pjms.294.2859 24353663

37. Sergi D, Morris AC, Kahn DE, McLean FH, Hay EA, Kubitz P, et al. Palmitic acid triggers inflammatory responses in N42 cultured hypothalamic cells partially via ceramide synthesis but not via TLR4. Nutr Neurosci. 2018; 1–14. doi: 10.1080/1028415X.2018.1501533 30032721

38. Wang Y, Qian Y, Fang Q, Zhong P, Li W, Wang L, et al. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun. 2017; 8. doi: 10.1038/ncomms13997 28045026

39. Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N. A review on the possible molecular mechanism of action of N-acetylcysteine against insulin resistance and type-2 diabetes development. Clin Biochem. 2015; 48: 1200–1208. doi: 10.1016/j.clinbiochem.2015.04.017 25920891


Článek vyšel v časopise

PLOS One


2019 Číslo 12