Prolonged fasting followed by refeeding modifies proteome profile and parvalbumin expression in the fast-twitch muscle of pacu (Piaractus mesopotamicus)

Autoři: Rafaela Nunes da Silva-Gomes aff001;  Maria Laura Gabriel Kuniyoshi aff001;  Bruno Oliveira da Silva Duran aff001;  Bruna Tereza Thomazini Zanella aff001;  Paula Paccielli Freire aff001;  Tassiana Gutierrez de Paula aff001;  Bruno Evaristo de Almeida Fantinatti aff001;  Rondinelle Artur Simões Salomão aff002;  Robson Francisco Carvalho aff001;  Lucilene Delazari Santos aff003;  Maeli Dal-Pai-Silva aff001
Působiště autorů: Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil aff001;  University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil aff002;  Center for the Studies of Venoms and Venomous Animals (CEVAP)/ Graduate Program in Tropical Diseases (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225864


Here, we analyzed the fast-twitch muscle of juvenile Piaractus mesopotamicus (pacu) submitted to prolonged fasting (30d) and refeeding (6h, 24h, 48h and 30d). We measured the relative rate of weight and length increase (RRIlength and RRIweight), performed shotgun proteomic analysis and did Western blotting for PVALB after 30d of fasting and 30d of refeeding. We assessed the gene expression of igf-1, mafbx and pvalb after 30d of fasting and after 6h, 24h, 48h and 30d of refeeding. We performed a bioinformatic analysis to predict miRNAs that possibly control parvalbumin expression. After fasting, RRIlength, RRIweight and igf-1 expression decreased, while the mafbx expression increased, which suggest that prolonged fasting caused muscle atrophy. After 6h and 24h of refeeding, mafbx was not changed and igf-1 was downregulated, while after 48h of refeeding mafbx was downregulated and igf-1 was not changed. After 30d of refeeding, RRIlength and RRIweight were increased and igf-1 and mafbx expression were not changed. Proteomic analysis identified 99 proteins after 30d of fasting and 71 proteins after 30d of refeeding, of which 23 and 17, respectively, were differentially expressed. Most of these differentially expressed proteins were related to cytoskeleton, muscle contraction, and metabolism. Among these, parvalbumin (PVALB) was selected for further validation. The analysis showed that pvalb mRNA was downregulated after 6h and 24h of refeeding, but was not changed after 30d of fasting or 48h and 30d of refeeding. The Western blotting confirmed that PVALB protein was downregulated after 30d of fasting and 30d of refeeding. The downregulation of the protein and the unchanged expression of the mRNA after 30d of fasting and 30d of refeeding suggest a post-transcriptional regulation of PVALB. Our miRNA analysis predicted 444 unique miRNAs that may target pvalb. In conclusion, muscle atrophy and partial compensatory growth caused by prolonged fasting followed by refeeding affected the muscle proteome and PVALB expression.

Klíčová slova:

3' UTR – Gene expression – MicroRNAs – Muscle proteins – Protein expression – Protein interaction networks – Proteomics – Skeletal muscles


1. Wheatherley A, Gill H. Dynamics of increase in muscle fibers in fishes in relation to size and growth. Experientia. 1985;41: 353–354.

2. Magnoni LJ, Crespo D, Ibarz A, Blasco J, Fernández-Borràs J, Planas J V. Effects of sustained swimming on the red and white muscle transcriptome of rainbow trout (Oncorhynchus mykiss) fed a carbohydrate-rich diet. Comp Biochem Physiol Part A Mol Integr Physiol. 2013;166: 510–521. doi: 10.1016/j.cbpa.2013.08.005 23968867

3. Bodine SC, Latres E, Baumhueter S, Lai VK-M, Nunez L, Clarke BA, et al. Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy. Science (80-). American Association for the Advancement of Science; 2001;294: 1704–1708. doi: 10.1126/science.1065874 11679633

4. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx / atrogin-1. Am J Physiol Metab. 2014;307: E469–E484. doi: 10.1152/ajpendo.00204.2014 25096180

5. Tu MK, Levin JB, Hamilton AM, Borodinsky LN. Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium. 2016;59: 91–97. doi: 10.1016/j.ceca.2016.02.005 26944205

6. Sandri M. Signaling in Muscle Atrophy and Hypertrophy. Physiology. 2007;23: 160–170. doi: 10.1152/physiol.00041.2007 18556469

7. Brett J. Enviromental Factors and Growth Fish Physiology. London: Academic Press; 1979.

8. Johnston I a, Bower NI, Macqueen DJ. Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol. 2011;214: 1617–1628. doi: 10.1242/jeb.038620 21525308

9. Béné C, Barange M, Subasinghe R, Pinstrup-Andersen P, Merino G, Hemre G-I, et al. Feeding 9 billion by 2050 –Putting fish back on the menu. Food Secur. 2015;7: 261–274. doi: 10.1007/s12571-015-0427-z

10. Sänger AM, Stoiber W. Muscle fiber diversity and plasticity. In: Johnston IA, editor. Muscle development and growth. San Diego: Academic Press; 2001. pp. 187–250. doi: 10.1016/S1546-5098(01)18008-8

11. Johnston I a. Environment and plasticity of myogenesis in teleost fish. J Exp Biol. 2006;209: 2249–2264. doi: 10.1242/jeb.02153 16731802

12. Nebo C, Portella MC, Carani FR, de Almeida FLA, Padovani CR, Carvalho RF, et al. Short periods of fasting followed by refeeding change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol Part B Biochem Mol Biol. 2013;164: 268–274.

13. Paula TG de, Zanella BTT, Fantinatti BE de A, Moraes LN de, Duran BO da S, Oliveira CB de, et al. Food restriction increase the expression of mTORC1 complex genes in the skeletal muscle of juvenile pacu (Piaractus mesopotamicus). PLoS One. 2017;12: 1–20. doi: 10.1371/journal.pone.0177679 28505179

14. Ali M, Nicieza A, Wootton RJ. Compensatory growth in fishes: a response to growth depression. Fish Fish. 2003;4: 147–190.

15. Rescan P, Cam A Le, Rallière C, Montfort J. Global gene expression in muscle from fasted / refed trout reveals up-regulation of genes promoting myofibre hypertrophy but not myofibre production. BMC Genomics. BMC Genomics; 2017;18: 447. doi: 10.1186/s12864-017-3837-9 28592307

16. Gabriel Kuniyoshi ML, Nunes Da Silva-Gomes R, Cavalcante Souza Vieira J, Casemiro Hessel M, Assunção Mareco E, Dos Santos VB, et al. Proteomic analysis of the fast-twitch muscle of pacu (Piaractus mesopotamicus) after prolonged fasting and compensatory growth. Comp Biochem Physiol Part D Genomics Proteomics. 2019;30: 321–332. doi: 10.1016/j.cbd.2019.04.005 31048267

17. Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med. 2016;98: 218–230. doi: 10.1016/j.freeradbiomed.2015.12.031 26738803

18. Fuentes EN, Björnsson BT, Valdés JA, Einarsdottir IE, Lorca B, Alvarez M, et al. IGF-I/PI3K/Akt and IGF-I/MAPK/ERK pathways in vivo in skeletal muscle are regulated by nutrition and contribute to somatic growth in the fine flounder. Am J Physiol Integr Comp Physiol. 2011;300: R1532–R1542. doi: 10.1152/ajpregu.00535.2010 21389330

19. Fuentes EN, Einarsdottir IE, Paredes R, Hidalgo C, Valdes JA, Björnsson BT, et al. The TORC1/P70S6K and TORC1/4EBP1 signaling pathways have a stronger contribution on skeletal muscle growth than MAPK/ERK in an early vertebrate: Differential involvement of the IGF system and atrogenes. Gen Comp Endocrinol. Elsevier Inc.; 2015;210: 96–106. doi: 10.1016/j.ygcen.2014.10.012 25449137

20. Leung NYH, Wai CYY, Shu S, Wang J, Kenny TP, Chu KH, et al. Current Immunological and Molecular Biological Perspectives on Seafood Allergy: A Comprehensive Review. Clin Rev Allergy Immunol. 2014;46: 180–197. doi: 10.1007/s12016-012-8336-9 23242979

21. Carrera M, Cañas B, Gallardo JM. Rapid direct detection of the major fish allergen, parvalbumin, by selected MS/MS ion monitoring mass spectrometry. J Proteomics. 2012;75: 3211–3220. doi: 10.1016/j.jprot.2012.03.030 22498884

22. Arif SH. A Ca2+‐binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology. BioEssays. 2009;31: 410–421. doi: 10.1002/bies.200800170 19274659

23. Celio MR, Heizmann CW. Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres. Nature. Nature Publishing Group; 1982;297: 504. doi: 10.1038/297504a0 6211622

24. Rall JA. Role of Parvalbumin in Skeletal Muscle Relaxation. Physiology. 1996;11: 249–255. doi: 10.1152/physiologyonline.1996.11.6.249

25. Berchtold MW, Brinkmeier H, Muntener M. Calcium Ion in Skeletal Muscle: Its Crucial Role for Muscle Function, Plasticity, and Disease. Physiol Rev. 2000;80: 1215–1265. doi: 10.1152/physrev.2000.80.3.1215 10893434

26. Shevchenko A, Valcu C-M, Junqueira M. Tools for exploring the proteomosphere. J Proteomics. 2009/01/22. 2009;72: 137–144. doi: 10.1016/j.jprot.2009.01.012 19167528

27. Mallick P, Kuster B. Proteomics: a pragmatic perspective. Nat Biotechnol. 2010;28: 695. Available: doi: 10.1038/nbt.1658 20622844

28. Oliveira BM, Coorssen JR, Martins-de-Souza D. 2DE: The Phoenix of Proteomics. J Proteomics. Elsevier B.V.; 2014;104: 140–150. doi: 10.1016/j.jprot.2014.03.035 24704856

29. Gilmore JM, Washburn MP. Advances in shotgun proteomics and the analysis of membrane proteomes. J Proteomics. 2010;73: 2078–2091. doi: 10.1016/j.jprot.2010.08.005 20797458

30. Holmberg EL. Viaje a Misiones. Bol la Acad Nac Ciencias en Córdoba. 1887;10: 252–288.

31. Baldisseroto B, Gomes LC. Espécies nativas para psicultura no Brasil. 2005.

32. Martínez M, Guderley H, Dutil J-D, Winger PD, He P, Walsh SJ. Condition, prolonged swimming performance and muscle metabolic capacities of cod Gadus morhua. J Exp Biol. 2003;206: 503 LP– 511. doi: 10.1242/jeb.00098 12502771

33. Dias Junior W, Baviera AM, Zanon NM, Galban VD, Garófalo MAR, Machado CR, et al. Lipolytic response of adipose tissue and metabolic adaptations to long periods of fasting in red tilapia (Oreochromis sp., Teleostei: Cichlidae). Anais da Academia Brasileira de Ciências. scielo; 2016. pp. 1743–1754.

34. Gimbo RY, Fávero GC, Franco Montoya LN, Urbinati EC. Energy deficit does not affect immune responses of experimentally infected pacu (Piaractus mesopotamicus). Fish Shellfish Immunol. 2015;43: 295–300. doi: 10.1016/j.fsi.2015.01.005 25584872

35. Souza VL, Urbinati EC, Martins MIEG, Silva PC. Avaliação do Crescimento e do Custo da Alimentação do Pacu (Piaractus mesopotamicus Holmberg, 1887) Submetido a Ciclos Alternados de Restrição Alimentar e Realimentação. Rev Bras Zootec. 2003;32: 19–28.

36. Bock CL, Padovani CR. Considerações sobre a reprodução artificial e alevinagem de pacu (Piaractus mesopotamicus, Holmberg, 1887) em viveiros. Acta Sci. 2000;22: 495–501. doi: 10.4025/actascibiolsci.v22i0.2935

37. Leary S, Underwood W, Anthony R, Cartner S, Corey D, Grandin T, et al. AVMA guidelines for the euthanasia of animals: 2013 edition. 2013th ed. Schaumburg: American Veterinary Medical Association; 2013.

38. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. United States; 1976;72: 248–254. doi: 10.1016/0003-2697(76)90527-3

39. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2018;47: D442–D450. doi: 10.1093/nar/gky1106 30395289

40. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. England; 2015;43: D447–52. doi: 10.1093/nar/gku1003 25352553

41. Gajewski KG, Hsieh Y-HP. Monoclonal Antibody Specific to a Major Fish Allergen: Parvalbumin. J Food Prot. 2009;72: 818–825. doi: 10.4315/0362-028x-72.4.818 19435232

42. Qiu-Feng C, Guang-Ming L, Li T, Hara K, Wang X-C, Su W-J, et al. Purification and Characterization of Parvalbumins, the Major Allergens in Red Stingray (Dasyatis akajei). J Agric Food Chem. 2010;58: 12964–12969. doi: 10.1021/jf103316h 21121608

43. Duran BO da S, Fernandez GJ, Mareco EA, Moraes LN, Salomao RAS, Gutierrez de Paula T, et al. Differential microRNA Expression in Fast- and Slow-Twitch Skeletal Muscle of Piaractus mesopotamicus during Growth. PLoS One. United States; 2015;10: e0141967. doi: 10.1371/journal.pone.0141967 26529415

44. Mareco EA, de la Serrana D, Johnston IA, Dal-Pai-Silva M. Characterization of the transcriptome of fast and slow muscle myotomal fibres in the pacu (Piaractus mesopotamicus). BMC Genomics. 2015;16: 182. doi: 10.1186/s12864-015-1423-6 25886905

45. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. United States; 2001;25: 402–408. doi: 10.1006/meth.2001.1262 11846609

46. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One. Public Library of Science; 2018;13: e0206239. Available: doi: 10.1371/journal.pone.0206239 30335862

47. Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. Rna. 2004;10: 1507–1517. doi: 10.1261/rna.5248604 15383676

48. Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics. 2010;11: 129. doi: 10.1186/1471-2105-11-129 20230624

49. Ricker WE. Growth in length and in weight. Computation and interpretation of biological statistics of fish populations. Ottawa: Bulletin of the fisheries research board in Canada; 1975. pp. 203–234.

50. Leys C, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol. 2013;49: 764–766.

51. Navarro I, Gutiérrez J. Chapter 17 Fasting and starvation. In: Hochachka PW, Mommsen TPBT-B and MB of F, editors. Metabolic biochemistry. Elsevier; 1995. pp. 393–434.

52. Singh R, Cuervo AM. Autophagy in the cellular energetic balance. Cell Metab. Elsevier Inc.; 2011;13: 495–504. doi: 10.1016/j.cmet.2011.04.004 21531332

53. Rescan P-Y, Montfort J, Rallière C, Le Cam A, Esquerré D, Hugot K. Dynamic gene expression in fish muscle during recovery growth induced by a fasting-refeeding schedule. BMC Genomics. 2007;8: 438. doi: 10.1186/1471-2164-8-438 18045468

54. Bower NI, Johnston IA. Transcriptional Regulation of the IGF Signaling Pathway by Amino Acids and Insulin-Like Growth Factors during Myogenesis in Atlantic Salmon. Parise G, editor. PLoS One. San Francisco, USA: Public Library of Science; 2010;5: e11100. doi: 10.1371/journal.pone.0011100 20559434

55. Bower NI, de la Serrana DG, Johnston IA. Characterisation and differential regulation of MAFbx/Atrogin-1 a and b transcripts in skeletal muscle of Atlantic salmon (Salmo salar). Biochem Biophys Res Commun. 2010;396: 265–271. doi: 10.1016/j.bbrc.2010.04.076 20399749

56. Bower NI, Taylor RG, Johnston IA. Phasing of muscle gene expression with fasting-induced recovery growth in Atlantic salmon. Front Zool. BioMed Central; 2009;6: 18. doi: 10.1186/1742-9994-6-18 19703292

57. Carrera M, Cañas B, Gallardo JM. The sarcoplasmic fish proteome: Pathways, metabolic networks and potential bioactive peptides for nutritional inferences. J Proteomics. Elsevier B.V.; 2012;78: 211–220. doi: 10.1016/j.jprot.2012.11.016 23201118

58. Parker KC, Walsh RJ, Salajegheh M, Amato AA, Krastins B, Sarracino DA, et al. Characterization of Human Skeletal Muscle Biopsy Samples Using Shotgun Proteomics. J Proteome Res. American Chemical Society; 2009;8: 3265–3277. doi: 10.1021/pr800873q 19382779

59. Hidalgo MC, Cardenete G, Morales AE, Arizcun M, Abellán E. Regional asymmetry of metabolic and antioxidant profile in the sciaenid fish shi drum (Umbrina cirrosa) white muscle. Response to starvation and refeeding. Redox Biol. Elsevier B.V.; 2017;11: 682–687. doi: 10.1016/j.redox.2017.01.022 28167333

60. Polakof S, Panserat S, Soengas JL, Moon TW. Glucose metabolism in fish: a review. J Comp Physiol B. 2012;182: 1015–1045. doi: 10.1007/s00360-012-0658-7 22476584

61. Bernstein BW, Bamburg JR. ADF/Cofilin: A Functional Node in Cell Biology. Trends Cell Biol. 2010;20: 187–195. doi: 10.1016/j.tcb.2010.01.001 20133134

62. Stastna M, Van Eyk JE. Analysis of protein isoforms: can we do it better? Proteomics. 2012/09/19. 2012;12: 2937–2948. doi: 10.1002/pmic.201200161 22888084

63. Gunning PW, Schevzov G, Kee AJ, Hardeman EC. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol. Elsevier; 2005;15: 333–341. doi: 10.1016/j.tcb.2005.04.007 15953552

64. de Vareilles M, Richard N, Gavaia PJ, Silva TS, Cordeiro O, Guerreiro I, et al. Impact of dietary protein hydrolysates on skeleton quality and proteome in Diplodus sargus larvae. J Appl Ichthyol. John Wiley & Sons, Ltd (10.1111); 2012;28: 477–487. doi: 10.1111/j.1439-0426.2012.01986.x

65. Sharp MF, Lopata AL. Fish Allergy: In Review. Clin Rev Allergy Immunol. 2014;46: 258–271. doi: 10.1007/s12016-013-8363-1 23440653

66. Magnoni LJ, Roher N, Crespo D, Krasnov A. In Vivo Molecular Responses of Fast and Slow Muscle Fibers to Lipopolysaccharide in a Teleost Fish, the Rainbow Trout (Oncorhynchus mykiss). 2015; 67–87. doi: 10.3390/biology4010067 25658438

67. Piovesana S, Capriotti AL, Caruso G, Cavaliere C, Barbera G La, Chiozzi RZ, et al. Labeling and label free shotgun proteomics approaches to characterize muscle tissue from farmed and wild gilthead sea bream (Sparus aurata). J Chromatogr A. Elsevier B.V.; 2015; doi: 10.1016/j.chroma.2015.07.049 26233254

68. Vieira JCS, Cavecci B, Queiroz J V, Braga CP, Padilha CCF, Leite AL, et al. Determination of the Mercury Fraction Linked to Protein of Muscle and Liver Tissue of Tucunare (Cichla spp.) from the Amazon Region of Brazil. Arch Environ Contam Toxicol. United States; 2015;69: 422–430. doi: 10.1007/s00244-015-0160-9 25981407

69. Bunratsami S, Udomuksorn W, Kumarnsit E, Vongvatcharanon S, Vongvatcharanon U. Estrogen replacement improves skeletal muscle performance by increasing parvalbumin levels in ovariectomized rats. Acta Histochem. Elsevier GmbH.; 2015;117: 163–175. doi: 10.1016/j.acthis.2014.12.003 25578914

70. Cai DQ, Li M, Lee KKH, Lee KM, Qin L, Chan KM. Parvalbumin Expression Is Downregulated in Rat Fast-Twitch Skeletal Muscles during Aging. Arch Biochem Biophys. 2001;387: 202–208. doi: 10.1006/abbi.2001.2231 11370842

71. Cai Y, Yu X, Hu S, Yu J. A Brief Review on the Mechanisms of miRNA Regulation. Genomics Proteomics Bioinformatics. 2009;7: 147–154. doi: 10.1016/S1672-0229(08)60044-3 20172487

72. Williams AH, Liu N, van Rooij E, Olson EN. MicroRNA control of muscle development and disease. Curr Opin Cell Biol. 2009;21: 461–469. doi: 10.1016/ 19278845

73. Huang J, Forsberg NE. Role of calpain in skeletal-muscle protein degradation. Proc Natl Acad Sci U S A. The National Academy of Sciences; 1998;95: 12100–12105. doi: 10.1073/pnas.95.21.12100 9770446

74. Pandurangan M, Hwang I. The role of calpain in skeletal muscle. Animal Cells Syst (Seoul). Taylor & Francis; 2012;16: 431–437. doi: 10.1080/19768354.2012.724708

75. Espinosa A, Estrada M, Jaimovich E. IGF-I and insulin induce different intracellular calcium signals in skeletal muscle cells. J Endocrinol. Soc Endocrinology; 2004;182: 339–352. doi: 10.1677/joe.0.1820339 15283694

76. Bruton JD, Katz A, Westerblad H. Insulin increases near-membrane but not global Ca(2+) in isolated skeletal muscle. Proc Natl Acad Sci U S A. The National Academy of Sciences; 1999;96: 3281–3286. doi: 10.1073/pnas.96.6.3281 10077675

77. Hara M, Tabata K, Suzuki T, Do M-KQ, Mizunoya W, Nakamura M, et al. Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am J Physiol Physiol. American Physiological Society; 2012;302: C1741–C1750. doi: 10.1152/ajpcell.00068.2012 22460715

Článek vyšel v časopise


2019 Číslo 12