New Mycobacteroides abscessus subsp. massiliense strains with recombinant hsp65 gene laterally transferred from Mycobacteroides abscessus subsp. abscessus: Potential for misidentification of M. abscessus strains with the hsp65-based method
Autoři:
Byoung-Jun Kim aff001; Ga-Na Kim aff001; Bo-Ram Kim aff001; Tae-Sun Shim aff002; Yoon-Hoh Kook aff001; Bum-Joon Kim aff001
Působiště autorů:
Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
aff001; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0220312
Souhrn
It has been reported that lateral gene transfer (LGT) events among Mycobacteroides abscessus strains are prevalent. The hsp65 gene, a chronometer gene for bacterial phylogenetic analysis, is resistant to LGT events, particularly among mycobacterial strains, rendering the hsp65-targeting method the most widely used method for mycobacterial detection. To determine the prevalence of M. abscessus strains that are subject to hsp65 LGT, we applied rpoB typing to 100 clinically isolated Korean strains of M. abscessus that had been identified by hsp65 sequence analysis. The analysis indicated the presence of 2 rough strains, showing a discrepancy between the 2 typing methods. MLST analysis based on the partial sequencing of seven housekeeping genes, erm(41) PCR and further hsp65 PCR-restriction enzyme and polymorphism analysis (PRA) were conducted to identify the two strains. The MLST results showed that the two strains belong to M. abscessus subsp. massiliense and not to M. abscessus subsp. abscessus, as indicated by the rpoB-based analysis, suggesting that their hsp65 genes are subject to LGT from M. abscessus subsp. abscessus. Further analysis of these strains using the hsp65 PRA method indicated that these strains possess a PRA pattern identical to that of M. abscessus subsp. abscessus and distinct from that of M. abscessus subsp. massiliense. In conclusion, we identified two M. abscessus subsp. massiliense rough strains from Korean patients with hsp65 genes that might be laterally transferred from M. abscessus subsp. abscessus. To the best of our knowledge, this is the first demonstration of possible LGT events associated with the hsp65 gene in mycobacteria. Our results also suggest that there is the potential for misidentification when the hsp65-based protocol is used for mycobacterial identification.
Klíčová slova:
Biology and life sciences – Evolutionary biology – Evolutionary systematics – Phylogenetics – Phylogenetic analysis – Taxonomy – Molecular biology – Molecular biology techniques – Artificial gene amplification and extension – Polymerase chain reaction – Artificial genetic recombination – Gene targeting – Organisms – Bacteria – Actinobacteria – Mycobacterium tuberculosis – Mycobacteria – Microbiology – Medical microbiology – Microbial pathogens – Bacterial pathogens – Computer and information sciences – Data management – Research and analysis methods – Database and informatics methods – Bioinformatics – Sequence analysis – Sequence alignment – DNA sequence analysis – Medicine and health sciences – Pathology and laboratory medicine – Pathogens
Zdroje
1. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416. doi: 10.1164/rccm.200604-571ST 17277290
2. Daley CL, Griffith DE. Pulmonary disease caused by rapidly growing mycobacteria. Clin Chest Med. 2002;23(3):623–32, vii. 12370998
3. Harris KA, Kenna DT, Blauwendraat C, Hartley JC, Turton JF, Aurora P, et al. Molecular fingerprinting of Mycobacterium abscessus strains in a cohort of pediatric cystic fibrosis patients. J Clin Microbiol. 2012;50(5):1758–61. doi: 10.1128/JCM.00155-12 22403419
4. Maurer FP, Ruegger V, Ritter C, Bloemberg GV, Bottger EC. Acquisition of clarithromycin resistance mutations in the 23S rRNA gene of Mycobacterium abscessus in the presence of inducible erm(41). J Antimicrob Chemother. 2012;67(11):2606–11. doi: 10.1093/jac/dks279 22833642
5. Choi WS, Kim MJ, Park DW, Son SW, Yoon YK, Song T, et al. Clarithromycin and amikacin vs. clarithromycin and moxifloxacin for the treatment of post-acupuncture cutaneous infections due to Mycobacterium abscessus: a prospective observational study. Clin Microbiol Infec. 2011;17(7):1084–90.
6. Nash KA, Brown-Elliott BA, Wallace RJ. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother. 2009;53(4):1367–76. doi: 10.1128/AAC.01275-08 19171799
7. Kim HY, Kook Y, Yun YJ, Park CG, Lee NY, Shim TS, et al. Proportions of Mycobacterium massiliense and Mycobacterium bolletii strains among Korean Mycobacterium chelonae-Mycobacterium abscessus group isolates. J Clin Microbiol. 2008;46(10):3384–90. doi: 10.1128/JCM.00319-08 18753344
8. Medjahed H, Gaillard JL, Reyrat JM. Mycobacterium abscessus: a new player in the mycobacterial field. Trends Microbiol. 2010;18(3):117–23. doi: 10.1016/j.tim.2009.12.007 20060723
9. Koh WJ, Jeon K, Lee NY, Kim BJ, Kook YH, Lee SH, et al. Clinical Significance of Differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Resp Crit Care. 2011;183(3):405–10.
10. Leao SC, Tortoli E, Euzeby JP, Garcia MJ. Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp bolletii comb. nov., designation of Mycobacterium abscessus subsp abscessus subsp nov and emended description of Mycobacterium abscessus. Int J Syst Evol Microbiol. 2011;61:2311–3. doi: 10.1099/ijs.0.023770-0 21037035
11. Tortoli E, Kohl TA, Brown-Elliott BA, Trovato A, Leao SC, Garcia MJ, et al. Emended description of Mycobacterium abscessus, Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii and designation of Mycobacterium abscessus subsp. massiliense comb. nov. Int J Syst Evol Microbiol. 2016;66(11):4471–9. doi: 10.1099/ijsem.0.001376 27499141
12. Kim BJ, Yi SY, Shim TS, Do SY, Yu HK, Park YG, et al. Discovery of a novel hsp65 genotype within Mycobacterium massiliense associated with the rough colony morphology. PLoS One. 2012;7(6):e38420. doi: 10.1371/journal.pone.0038420 22693637
13. Kim BJ, Kim BR, Hong SH, Seok SH, Kook YH. Complete genome sequence of Mycobacterium massiliense clinical strain Asan 50594, belonging to the Type II genotype. Genome Announc. 2013;1(4).
14. Kim BJ, Kim BR, Lee SY, Kook YH, Kim BJ. Rough colony morphology of Mycobacterium massiliense Type II genotype is due to the deletion of glycopeptidolipid locus within its genome. BMC genomics. 2013;14:890. doi: 10.1186/1471-2164-14-890 24341808
15. Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol. 2018;9:67. doi: 10.3389/fmicb.2018.00067 29497402
16. Raz Y, Tannenbaum E. The influence of horizontal gene transfer on the mean fitness of unicellular populations in static environments. Genetics. 2010;185(1):327–37. doi: 10.1534/genetics.109.113613 20194966
17. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405(6784):299–304. doi: 10.1038/35012500 10830951
18. Reva O, Korotetskiy I, Ilin A. Role of the horizontal gene exchange in evolution of pathogenic Mycobacteria. BMC Evol Biol. 2015;15. doi: 10.1186/s12862-015-0297-1
19. Krzywinska E, Krzywinski J, Schorey JS. Naturally occurring horizontal gene transfer and homologous recombination in Mycobacterium. Microbiology. 2004;150:1707–12. doi: 10.1099/mic.0.27088-0 15184557
20. Macheras E, Roux AL, Bastian S, Leao SC, Palaci M, Sivadon-Tardy V, et al. Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (Sensu Lato) strains. J Clin Microbiol. 2011;49(2):491–9. doi: 10.1128/JCM.01274-10 21106786
21. Sapriel G, Konjek J, Orgeur M, Bouri L, Frezal L, Roux AL, et al. Genome-wide mosaicism within Mycobacterium abscessus: evolutionary and epidemiological implications. BMC Genomics. 2016;17:118. doi: 10.1186/s12864-016-2448-1 26884275
22. Kim BJ, Kim GN, Kim BR, Shim TS, Kook YH, Kim BJ. Phylogenetic analysis of Mycobacterium massiliense strains having recombinant rpoB gene laterally transferred from Mycobacterium abscessus. PLoS One. 2017;12(6):e0179237. doi: 10.1371/journal.pone.0179237 28604829
23. Kim BJ, Kim BR, Lee SY, Kim GN, Kook YH. Molecular taxonomic evidence for two distinct genotypes of Mycobacterium yongonense via genome-based phylogenetic analysis. PLoS One. 2016;11(3):e0152703. doi: 10.1371/journal.pone.0152703 27031100
24. Kim H, Kim SH, Shim TS, Kim MN, Bai GH, Park YG, et al. Differentiation of Mycobacterium species by analysis of the heat-shock protein 65 gene (hsp65). Int J Syst Evol Microbiol. 2005;55(Pt 4):1649–56. doi: 10.1099/ijs.0.63553-0 16014496
25. Telenti A, Marchesi F, Balz M, Bally F, Bottger EC, Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. 1993;31(2):175–8. 8381805
26. Kim BJ, Lee SH, Lyu MA, Kim SJ, Bai GH, Chae GT, et al. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J Clin Microbiol. 1999;37(6):1714–20. 10325313
27. Adekambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol. 2003;41(12):5699–708. doi: 10.1128/JCM.41.12.5699-5708.2003 14662964
28. Machado GE, Matsumoto CK, Chimara E, Duarte Rda S, de Freitas D, Palaci M, et al. Multilocus sequence typing scheme versus pulsed-field gel electrophoresis for typing Mycobacterium abscessus isolates. J Clin Microbiol. 2014;52(8):2881–91. doi: 10.1128/JCM.00688-14 24899019
29. Macheras E, Konjek J, Roux AL, Thiberge JM, Bastian S, Leao SC, et al. Multilocus sequence typing scheme for the Mycobacterium abscessus complex. Res Microbiol. 2014;165(2):82–90. doi: 10.1016/j.resmic.2013.12.003 24384536
30. Blauwendraat C, Dixon GLJ, Hartley JC, Foweraker J, Harris KA. The use of a two-gene sequencing approach to accurately distinguish between the species within the Mycobacterium abscessus complex and Mycobacterium chelonae. Eur J Clin Microbiol. 2012;31(8):1847–53.
31. Kim HY, Kim BJ, Kook Y, Yun YJ, Shin JH, Kim BJ, et al. Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol. 2010;54(6):347–53. doi: 10.1111/j.1348-0421.2010.00221.x 20536733
32. Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 2008;9(4):299–306. doi: 10.1093/bib/bbn017 18417537
33. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25. doi: 10.1093/oxfordjournals.molbev.a040454 3447015
34. Fitch WM. Toward defining course of evolution—Minimum change for a specific tree topology. Syst Zool. 1971;20(4):406–16.
35. Felsenstein J. Confidence-limits on phylogenies—an approach using the bootstrap. Evolution. 1985;39(4):783–91. doi: 10.1111/j.1558-5646.1985.tb00420.x 28561359
36. Harmsen D, Karch H. 16S rDNA for diagnosing pathogens: a living tree. Asm News. 2004;70(1):19–24.
37. Kolbert CP, Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol. 1999;2(3):299–305. doi: 10.1016/S1369-5274(99)80052-6 10383862
38. Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev. 2003;16(2):319–54. doi: 10.1128/CMR.16.2.319-354.2003 12692101
39. Clarridge JE. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004;17(4):840–62. doi: 10.1128/CMR.17.4.840-862.2004 15489351
40. Tortoli E. Phylogeny of the genus Mycobacterium: many doubts, few certainties. Infect Genet Evol. 2012;12(4):827–31. doi: 10.1016/j.meegid.2011.05.025 21684354
41. Turenne CY, Tschetter L, Wolfe J, Kabani A. Necessity of quality-controlled 16S rRNA gene sequence databases: identifying nontuberculous Mycobacterium species. J Clin Microbiol. 2001;39(10):3637–48. doi: 10.1128/JCM.39.10.3637-3648.2001 11574585
42. Kim BJ, Hong SH, Kook YH. Molecular evidence of lateral gene transfer in rpoB gene of Mycobacterium yongonense strains via multilocus sequence analysis. PLoS One. 2013;8(1):e51846. doi: 10.1371/journal.pone.0051846 23382812
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Proč jsou nemocnice nepřítelem spánku? A jak to změnit?
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?