Retinoic acid-stimulated ERK1/2 pathway regulates meiotic initiation in cultured fetal germ cells

Autoři: Sung-Min Kim aff001;  Toshifumi Yokoyama aff001;  Dylan Ng aff001;  Ferhat Ulu aff001;  Yukiko Yamazaki aff001
Působiště autorů: Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States of America aff001;  Department of Animal Science, Kobe University, Kobe, Hyogo, Japan aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224628


In murine fetal germ cells, retinoic acid (RA) is an extrinsic cue for meiotic initiation that stimulates transcriptional activation of the Stimulated by retinoic acid gene 8 (Stra8), which is required for entry of germ cells into meiotic prophase I. Canonically, the biological activities of RA are mediated by nuclear RA receptors. Recent studies in somatic cells found that RA noncanonically stimulates intracellular signal transduction pathways to regulate multiple cellular processes. In this study, using a germ cell culture system, we investigated (1) whether RA treatment activates any mitogen-activated protein kinase (MAPK) pathways in fetal germ cells at the time of sex differentiation, and (2) if this is the case, whether the corresponding RA-stimulated signaling pathway regulates Stra8 expression in fetal germ cells and their entry into meiosis. When XX germ cells at embryonic day (E) 12.5 were cultured with RA, the extracellular-signal-regulated kinase (ERK) 1/2 pathway was predominantly activated. MEK1/2 inhibitor (U0126) treatment suppressed the mRNA expressions of RA-induced Stra8 and meiotic marker genes (Rec8, Spo11, Dmc1, and Sycp3) in both XX and XY fetal germ cells. Furthermore, U0126 treatment dramatically reduced STRA8 protein levels and numbers of meiotic cells among cultured XX and XY fetal germ cells even in the presence of RA. Taken together, our results suggest the novel concept that the RA functions by stimulating the ERK1/2 pathway and that this activity is critical for Stra8 expression and meiotic progression in fetal germ cells.

Klíčová slova:

Gene expression – Germ cells – Gonads – MAPK signaling cascades – Meiosis – Phosphorylation – Protein expression – Signal transduction


1. Borum K (1961) Oogenesis in the mouse. A study of the meiotic prophase. Exp Cell Res 24: 495–507. doi: 10.1016/0014-4827(61)90449-9 13871511

2. Monk M, McLaren A (1981) X-chromosome activity in foetal germ cells of the mouse. J Embryol Exp Morphol 63: 75–84. 7310296

3. Hilscher B, Hilscher W, Bulthoff-Ohnolz B, Kramer U, Birke A, Pelzer H, et al. (1974) Kinetics of gametogenesis. I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tissue Res 154: 443–470. doi: 10.1007/bf00219667 4442109

4. McCarrey JR (2013) Toward a more precise and informative nomenclature describing fetal and neonatal male germ cells in rodents. Biol Reprod 89: 47. doi: 10.1095/biolreprod.113.110502 23843236

5. Griswold MD, Hogarth CA, Bowles J, Koopman P (2012) Initiating meiosis: the case for retinoic acid. Biol Reprod 86: 35. doi: 10.1095/biolreprod.111.096610 22075477

6. Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, et al. (2006) Retinoid signaling determines germ cell fate in mice. Science 312: 596–600. doi: 10.1126/science.1125691 16574820

7. Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC (2006) Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci U S A 103: 2474–2479. doi: 10.1073/pnas.0510813103 16461896

8. Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt AM, et al. (2008) Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci U S A 105: 14976–14980. doi: 10.1073/pnas.0807297105 18799751

9. Raverdeau M, Gely-Pernot A, Feret B, Dennefeld C, Benoit G, Davidson I, et al. (2012) Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis. Proc Natl Acad Sci U S A 109: 16582–16587. doi: 10.1073/pnas.1214936109 23012458

10. Bowles J, Feng CW, Miles K, Ineson J, Spiller C, Koopman P (2016) ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries. Nat Commun 7: 10845. doi: 10.1038/ncomms10845 26892828

11. Bowles J, Feng CW, Spiller C, Davidson TL, Jackson A, Koopman P (2010) FGF9 suppresses meiosis and promotes male germ cell fate in mice. Dev Cell 19: 440–449. doi: 10.1016/j.devcel.2010.08.010 20833365

12. MacLean G, Li H, Metzger D, Chambon P, Petkovich M (2007) Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinology 148: 4560–4567. doi: 10.1210/en.2007-0492 17584971

13. Ohta K, Lin Y, Hogg N, Yamamoto M, Yamazaki Y (2010) Direct effects of retinoic acid on entry of fetal male germ cells into meiosis in mice. Biol Reprod 83: 1056–1063. doi: 10.1095/biolreprod.110.085787 20826729

14. Trautmann E, Guerquin MJ, Duquenne C, Lahaye JB, Habert R, Livera G (2008) Retinoic acid prevents germ cell mitotic arrest in mouse fetal testes. Cell Cycle 7: 656–664. doi: 10.4161/cc.7.5.5482 18256537

15. Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, de Rooij DG, et al. (2006) In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet 38: 1430–1434. doi: 10.1038/ng1919 17115059

16. Dokshin GA, Baltus AE, Eppig JJ, Page DC (2013) Oocyte differentiation is genetically dissociable from meiosis in mice. Nat Genet 45: 877–883. doi: 10.1038/ng.2672 23770609

17. Menke DB, Koubova J, Page DC (2003) Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Dev Biol 262: 303–312. doi: 10.1016/s0012-1606(03)00391-9 14550793

18. Tedesco M, Desimio MG, Klinger FG, De Felici M, Farini D (2013) Minimal concentrations of retinoic acid induce stimulation by retinoic acid 8 and promote entry into meiosis in isolated pregonadal and gonadal mouse primordial germ cells. Biol Reprod 88: 145. doi: 10.1095/biolreprod.112.106526 23636811

19. Engedal N, Gjevik T, Blomhoff R, Blomhoff HK (2006) All-trans retinoic acid stimulates IL-2-mediated proliferation of human T lymphocytes: early induction of cyclin D3. J Immunol 177: 2851–2861. doi: 10.4049/jimmunol.177.5.2851 16920920

20. Zanotto-Filho A, Schroder R, Moreira JC (2008) Differential effects of retinol and retinoic acid on cell proliferation: a role for reactive species and redox-dependent mechanisms in retinol supplementation. Free Radic Res 42: 778–788. doi: 10.1080/10715760802385702 18785048

21. Zanotto-Filho A, Cammarota M, Gelain DP, Oliveira RB, Delgado-Canedo A, Dalmolin RJ, et al. (2008) Retinoic acid induces apoptosis by a non-classical mechanism of ERK1/2 activation. Toxicol In Vitro 22: 1205–1212. doi: 10.1016/j.tiv.2008.04.001 18474417

22. Yen A, Roberson MS, Varvayanis S (1999) Retinoic acid selectively activates the ERK2 but not JNK/SAPK or p38 MAP kinases when inducing myeloid differentiation. In Vitro Cell Dev Biol Anim 35: 527–532. doi: 10.1007/s11626-999-0063-z 10548434

23. Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, et al. (2006) International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol Rev 58: 712–725. doi: 10.1124/pr.58.4.4 17132850

24. di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, et al. (2015) Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 41: 1–115. doi: 10.1016/j.mam.2014.12.003 25543955

25. Mahony S, Mazzoni EO, McCuine S, Young RA, Wichterle H, Gifford DK (2011) Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis. Genome Biol 12: R2. doi: 10.1186/gb-2011-12-1-r2 21232103

26. Giuili G, Tomljenovic A, Labrecque N, Oulad-Abdelghani M, Rassoulzadegan M, Cuzin F (2002) Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep 3: 753–759. doi: 10.1093/embo-reports/kvf149 12151334

27. Kumar S, Chatzi C, Brade T, Cunningham TJ, Zhao X, Duester G (2011) Sex-specific timing of meiotic initiation is regulated by Cyp26b1 independent of retinoic acid signalling. Nat Commun 2: 151. doi: 10.1038/ncomms1136 21224842

28. Rochette-Egly C (2015) Retinoic acid signaling and mouse embryonic stem cell differentiation: Cross talk between genomic and non-genomic effects of RA. Biochim Biophys Acta 1851: 66–75. doi: 10.1016/j.bbalip.2014.04.003 24768681

29. Al Tanoury Z, Piskunov A, Rochette-Egly C (2013) Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 54: 1761–1775. doi: 10.1194/jlr.R030833 23440512

30. Altucci L, Rossin A, Hirsch O, Nebbioso A, Vitoux D, Wilhelm E, et al. (2005) Rexinoid-triggered differentiation and tumor-selective apoptosis of acute myeloid leukemia by protein kinase A-mediated desubordination of retinoid X receptor. Cancer Res 65: 8754–8765. doi: 10.1158/0008-5472.CAN-04-3569 16204045

31. Lopez-Carballo G, Moreno L, Masia S, Perez P, Barettino D (2002) Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. J Biol Chem 277: 25297–25304. doi: 10.1074/jbc.M201869200 12000752

32. Canon E, Cosgaya JM, Scsucova S, Aranda A (2004) Rapid effects of retinoic acid on CREB and ERK phosphorylation in neuronal cells. Mol Biol Cell 15: 5583–5592. doi: 10.1091/mbc.E04-05-0439 15371543

33. Chen N, Napoli JL (2008) All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. FASEB J 22: 236–245. doi: 10.1096/fj.07-8739com 17712061

34. Persaud SD, Lin YW, Wu CY, Kagechika H, Wei LN (2013) Cellular retinoic acid binding protein I mediates rapid non-canonical activation of ERK1/2 by all-trans retinoic acid. Cell Signal 25: 19–25. doi: 10.1016/j.cellsig.2012.09.002 22982089

35. Gupta P, Ho PC, Huq MM, Ha SG, Park SW, Khan AA, et al. (2008) Retinoic acid-stimulated sequential phosphorylation, PML recruitment, and SUMOylation of nuclear receptor TR2 to suppress Oct4 expression. Proc Natl Acad Sci U S A 105: 11424–11429. doi: 10.1073/pnas.0710561105 18682553

36. Alsayed Y, Uddin S, Mahmud N, Lekmine F, Kalvakolanu DV, Minucci S, et al. (2001) Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to all-trans-retinoic acid. J Biol Chem 276: 4012–4019. doi: 10.1074/jbc.M007431200 11060298

37. Bruck N, Vitoux D, Ferry C, Duong V, Bauer A, de The H, et al. (2009) A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARalpha to target promoters. EMBO J 28: 34–47. doi: 10.1038/emboj.2008.256 19078967

38. Gianni M, Bauer A, Garattini E, Chambon P, Rochette-Egly C (2002) Phosphorylation by p38MAPK and recruitment of SUG-1 are required for RA-induced RAR gamma degradation and transactivation. EMBO J 21: 3760–3769. doi: 10.1093/emboj/cdf374 12110588

39. Bost F, Caron L, Marchetti I, Dani C, Le Marchand-Brustel Y, Binetruy B (2002) Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J 361: 621–627. doi: 10.1042/0264-6021:3610621 11802792

40. Pellegrini M, Filipponi D, Gori M, Barrios F, Lolicato F, Grimaldi P, et al. (2008) ATRA and KL promote differentiation toward the meiotic program of male germ cells. Cell Cycle 7: 3878–3888. doi: 10.4161/cc.7.24.7262 19098446

41. Zhou Y, Qin Y, Qin Y, Xu B, Guo T, Ke H, et al. (2018) Wdr62 is involved in female meiotic initiation via activating JNK signaling and associated with POI in humans. PLoS Genet 14: e1007463. doi: 10.1371/journal.pgen.1007463 30102701

42. Szabo PE, Hubner K, Scholer H, Mann JR (2002) Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech Dev 115: 157–160. doi: 10.1016/s0925-4773(02)00087-4 12049782

43. Ohta K, Yamamoto M, Lin Y, Hogg N, Akiyama H, Behringer RR, et al. (2012) Male differentiation of germ cells induced by embryonic age-specific Sertoli cells in mice. Biol Reprod 86: 112. doi: 10.1095/biolreprod.111.095943 22262692

44. Chuma S, Nakatsuji N (2001) Autonomous transition into meiosis of mouse fetal germ cells in vitro and its inhibition by gp130-mediated signaling. Dev Biol 229: 468–479. doi: 10.1006/dbio.2000.9989 11203703

45. Yamazaki Y, Low EW, Marikawa Y, Iwahashi K, Bartolomei MS, McCarrey JR, et al. (2005) Adult mice cloned from migrating primordial germ cells. Proc Natl Acad Sci U S A 102: 11361–11366. doi: 10.1073/pnas.0504943102 16055553

46. Iwahashi K, Yoshioka H, Low EW, McCarrey JR, Yanagimachi R, Yamazaki Y (2007) Autonomous regulation of sex-specific developmental programming in mouse fetal germ cells. Biol Reprod 77: 697–706. doi: 10.1095/biolreprod.107.062851 17615405

47. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, et al. (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273: 18623–18632. doi: 10.1074/jbc.273.29.18623 9660836

48. Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T (2000) Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev 93: 139–149. doi: 10.1016/s0925-4773(00)00283-5 10781947

49. Hunter N, Borner GV, Lichten M, Kleckner N (2001) Gamma-H2AX illuminates meiosis. Nat Genet 27: 236–238. doi: 10.1038/85781 11242097

50. Gianni M, Parrella E, Raska I Jr., Gaillard E, Nigro EA, Gaudon C, et al. (2006) P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARalpha-mediated transcription. EMBO J 25: 739–751. doi: 10.1038/sj.emboj.7600981 16456540

51. Gehani SS, Agrawal-Singh S, Dietrich N, Christophersen NS, Helin K, Hansen K (2010) Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol Cell 39: 886–900. doi: 10.1016/j.molcel.2010.08.020 20864036

52. Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, et al. (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30: 127–135. doi: 10.1016/j.neuro.2008.11.001 19056420

53. Masia S, Alvarez S, de Lera AR, Barettino D (2007) Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol 21: 2391–2402. doi: 10.1210/me.2007-0062 17595318

54. Stavridis MP, Collins BJ, Storey KG (2010) Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation. Development 137: 881–890. doi: 10.1242/dev.043117 20179094

55. Yen A, Roberson MS, Varvayanis S, Lee AT (1998) Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res 58: 3163–3172. 9679985

56. Scheibe RJ, Ginty DD, Wagner JA (1991) Retinoic acid stimulates the differentiation of PC12 cells that are deficient in cAMP-dependent protein kinase. J Cell Biol 113: 1173–1182. doi: 10.1083/jcb.113.5.1173 1645738

57. Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10: 940–954. 8801176

58. Kefaloyianni E, Gaitanaki C, Beis I (2006) ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal 18: 2238–2251. doi: 10.1016/j.cellsig.2006.05.004 16806820

59. McCoy CE, Campbell DG, Deak M, Bloomberg GB, Arthur JS (2005) MSK1 activity is controlled by multiple phosphorylation sites. Biochem J 387: 507–517. doi: 10.1042/BJ20041501 15568999

60. Deak M, Clifton AD, Lucocq LM, Alessi DR (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17: 4426–4441. doi: 10.1093/emboj/17.15.4426 9687510

61. Lau PN, Cheung P (2011) Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc Natl Acad Sci U S A 108: 2801–2806. doi: 10.1073/pnas.1012798108 21282660

62. Aranda S, Mas G, Di Croce L (2015) Regulation of gene transcription by Polycomb proteins. Sci Adv 1: e1500737. doi: 10.1126/sciadv.1500737 26665172

63. Simon JA, Kingston RE (2013) Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49: 808–824. doi: 10.1016/j.molcel.2013.02.013 23473600

64. Yokobayashi S, Liang CY, Kohler H, Nestorov P, Liu Z, Vidal M, et al. (2013) PRC1 coordinates timing of sexual differentiation of female primordial germ cells. Nature 495: 236–240. doi: 10.1038/nature11918 23486062

Článek vyšel v časopise


2019 Číslo 11