Delivering genes across the blood-brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids


Autoři: Qin Huang aff001;  Ken Y. Chan aff001;  Isabelle G. Tobey aff001;  Yujia Alina Chan aff001;  Tim Poterba aff001;  Christine L. Boutros aff002;  Alejandro B. Balazs aff002;  Richard Daneman aff003;  Jonathan M. Bloom aff001;  Cotton Seed aff001;  Benjamin E. Deverman aff001
Působiště autorů: Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America aff001;  Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States of America aff002;  Departments of Neurosciences and Pharmacology, University of California, San Diego, La Jolla, CA, United States of America aff003;  Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225206

Souhrn

The engineered AAV-PHP.B family of adeno-associated virus efficiently delivers genes throughout the mouse central nervous system. To guide their application across disease models, and to inspire the development of translational gene therapy vectors for targeting neurological diseases in humans, we sought to elucidate the host factors responsible for the CNS tropism of the AAV-PHP.B vectors. Leveraging CNS tropism differences across 13 mouse strains, we systematically determined a set of genetic variants that segregate with the permissivity phenotype, and rapidly identified LY6A as an essential receptor for the AAV-PHP.B vectors. Interfering with LY6A by CRISPR/Cas9-mediated Ly6a disruption or with blocking antibodies reduced transduction of mouse brain endothelial cells by AAV-PHP.eB, while ectopic expression of Ly6a increased AAV-PHP.eB transduction of HEK293T and CHO cells by 30-fold or more. Importantly, we demonstrate that this newly discovered mode of AAV binding and transduction can occur independently of other known AAV receptors. These findings illuminate the previously reported species- and strain-specific tropism characteristics of the AAV-PHP.B vectors and inform ongoing efforts to develop next-generation AAV vehicles for human CNS gene therapy.

Klíčová slova:

Capsids – Cell binding – Cell binding assay – Central nervous system – Endothelial cells – Galactose – Immunohistochemistry techniques – Mammalian genomics


Zdroje

1. Russell S, Bennett J, Wellman JA, Chung DC, Yu Z-F, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390: 849–860. doi: 10.1016/S0140-6736(17)31868-8 28712537

2. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. 2017;377: 1713–1722. doi: 10.1056/NEJMoa1706198 29091557

3. Ravina B. et al., Intraputaminal AADC gene therapy for advanced Parkinson's disease: interim results of a phase 1b Trial [abstract]. Human Gene Therapy. 28, A6 (December, 2017).

4. Nathwani AC, Davidoff AM, Tuddenham EGD. Advances in Gene Therapy for Hemophilia. Hum Gene Ther. 2017;28: 1004–1012. doi: 10.1089/hum.2017.167 28835123

5. Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu W-L, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017;20: 1172–1179. doi: 10.1038/nn.4593 28671695

6. Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34: 204–209. doi: 10.1038/nbt.3440 26829320

7. Tervo DGR, Hwang B-Y, Viswanathan S, Gaj T, Lavzin M, Ritola KD, et al. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron. 2016;92: 372–382. doi: 10.1016/j.neuron.2016.09.021 27720486

8. Körbelin J, Dogbevia G, Michelfelder S, Ridder DA, Hunger A, Wenzel J, et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol Med. 2016;8: 609–625. doi: 10.15252/emmm.201506078 27137490

9. Zelikowsky M, Hui M, Karigo T, Choe A, Yang B, Blanco MR, et al. The Neuropeptide Tac2 Controls a Distributed Brain State Induced by Chronic Social Isolation Stress. Cell. 2018;173: 1265–1279.e19. doi: 10.1016/j.cell.2018.03.037 29775595

10. Hillier D, Fiscella M, Drinnenberg A, Trenholm S, Rompani SB, Raics Z, et al. Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex. Nat Neurosci. 2017;20: 960–968. doi: 10.1038/nn.4566 28530661

11. A. L. Gibson et al., Adeno-Associated Viral Gene Therapy Using PHP.B:NPC1 Ameliorates Disease Phenotype in Mouse Model of Niemann-Pick C1 Disease (conference paper). American Society of Gene and Cell Therapy Annual Meeting. Washington, USA. (May, 2017).

12. Gao Y, Geng L, Chen VP, Brimijoin S. Therapeutic Delivery of Butyrylcholinesterase by Brain-Wide Viral Gene Transfer to Mice. Molecules. 2017;22. doi: 10.3390/molecules22071145 28698452

13. Morabito G, Giannelli SG, Ordazzo G, Bido S, Castoldi V, Indrigo M, et al. AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy. Mol Ther. 2017;25: 2727–2742. doi: 10.1016/j.ymthe.2017.08.004 28882452

14. Dayton RD, Grames MS, Klein RL. More expansive gene transfer to the rat CNS: AAV PHP.EB vector dose-response and comparison to AAV PHP.B. Gene Ther. 2018;25: 392–400. doi: 10.1038/s41434-018-0028-5 30013186

15. Jackson KL, Dayton RD, Deverman BE, Klein RL. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B. Front Mol Neurosci. 2016;9: 116. doi: 10.3389/fnmol.2016.00116 27867348

16. Hordeaux J, Wang Q, Katz N, Buza EL, Bell P, Wilson JM. The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice. Mol Ther. 2018;26: 664–668. doi: 10.1016/j.ymthe.2018.01.018 29428298

17. Matsuzaki Y, Konno A, Mochizuki R, Shinohara Y, Nitta K, Okada Y, et al. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci Lett. 2018;665: 182–188. doi: 10.1016/j.neulet.2017.11.049 29175632

18. Sah, D. et al., Safety and Increased Transduction Efficiency in the Adult Nonhuman Primate Central Nervous System with Intravenous Delivery of Two Novel Adeno-Associated Virus Capsids [abstract O661]. American Society of Gene and Cell Therapy Annual Meeting. Chicago, USA. Molecular Therapy. (May, 2018).

19. Allen WE, Kauvar IV, Chen MZ, Richman EB, Yang SJ, Chan K, et al. Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex. Neuron. 2017;94: 891–907.e6. doi: 10.1016/j.neuron.2017.04.017 28521139

20. Bedbrook CN, Deverman BE, Gradinaru V. Viral Strategies for Targeting the Central and Peripheral Nervous Systems. Annu Rev Neurosci. 2018;41: 323–348. doi: 10.1146/annurev-neuro-080317-062048 29709207

21. Hordeaux J, Yuan Y, Clark PM, Wang Q, Alexander Martino R, Sims JJ, et al. The GPI-linked protein LY6A (SCA-1) drives AAV-PHP.B transport across the blood-brain barrier. Mol Ther. Elsevier; 2019;0. doi: 10.1016/j.ymthe.2019.02.013 30819613

22. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34: 11929–11947. doi: 10.1523/JNEUROSCI.1860-14.2014 25186741

23. Hail [Internet]. Available: https://github.com/hail-is/hail

24. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 2011;477: 289–294. doi: 10.1038/nature10413 21921910

25. Spindler KR, Welton AR, Lim ES, Duvvuru S, Althaus IW, Imperiale JE, et al. The major locus for mouse adenovirus susceptibility maps to genes of the hematopoietic cell surface-expressed LY6 family. J Immunol. 2010;184: 3055–3062. doi: 10.4049/jimmunol.0903363 20164425

26. Guida JD, Fejer G, Pirofski LA, Brosnan CF, Horwitz MS. Mouse adenovirus type 1 causes a fatal hemorrhagic encephalomyelitis in adult C57BL/6 but not BALB/c mice. J Virol. 1995;69: 7674–7681. 7494276

27. Loeuillet C, Deutsch S, Ciuffi A, Robyr D, Taffé P, Muñoz M, et al. In vitro whole-genome analysis identifies a susceptibility locus for HIV-1. PLoS Biol. 2008;6: e32. doi: 10.1371/journal.pbio.0060032 18288889

28. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science. 2008;319: 921–926. doi: 10.1126/science.1152725 18187620

29. Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, et al. RNA interference screen for human genes associated with West Nile virus infection. Nature. 2008;455: 242–245. doi: 10.1038/nature07207 18690214

30. Mar KB, Rinkenberger NR, Boys IN, Eitson JL, McDougal MB, Blake Richardson R, et al. LY6E mediates an evolutionarily conserved enhancement of virus infection by targeting a late entry step. Nat Commun. Nature Publishing Group; 2018;9: 3603. doi: 10.1038/s41467-018-06000-y 30190477

31. Liu H-C, Niikura M, Fulton JE, Cheng HH. Identification of chicken lymphocyte antigen 6 complex, locus E (LY6E, alias SCA2) as a putative Marek’s disease resistance gene via a virus-host protein interaction screen. Cytogenet Genome Res. 2003;102: 304–308. doi: 10.1159/000075767 14970721

32. Loughner CL, Bruford EA, McAndrews MS, Delp EE, Swamynathan S, Swamynathan SK. Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum Genomics. 2016;10: 10. doi: 10.1186/s40246-016-0074-2 27098205

33. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520: 186–191. doi: 10.1038/nature14299 25830891

34. Pillay S, Zou W, Cheng F, Puschnik AS, Meyer NL, Ganaie SS, et al. AAV serotypes have distinctive interactions with domains of the cellular receptor AAVR. J Virol. 2017; doi: 10.1128/JVI.00391-17 28679762

35. Pierleoni A, Martelli PL, Casadio R. PredGPI: a GPI-anchor predictor. BMC Bioinformatics. 2008;9: 392. doi: 10.1186/1471-2105-9-392 18811934

36. Huang L-Y, Halder S, Agbandje-McKenna M. Parvovirus glycan interactions. Curr Opin Virol. 2014;7: 108–118. doi: 10.1016/j.coviro.2014.05.007 25047752

37. Bell CL, Gurda BL, Van Vliet K, Agbandje-McKenna M, Wilson JM. Identification of the galactose binding domain of the adeno-associated virus serotype 9 capsid. J Virol. 2012;86: 7326–7333. doi: 10.1128/JVI.00448-12 22514350

38. Deutscher SL, Hirschberg CB. Mechanism of galactosylation in the Golgi apparatus. A Chinese hamster ovary cell mutant deficient in translocation of UDP-galactose across Golgi vesicle membranes. J Biol Chem. 1986;261: 96–100. 3510203

39. Pillay S, Meyer NL, Puschnik AS, Davulcu O, Diep J, Ishikawa Y, et al. An essential receptor for adeno-associated virus infection. Nature. 2016;530: 108–112. doi: 10.1038/nature16465 26814968

40. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34: 184–191. doi: 10.1038/nbt.3437 26780180


Článek vyšel v časopise

PLOS One


2019 Číslo 11