Capacity of the medullary cavity of tibia and femur for intra-bone marrow transplantation in mice

Autoři: Dieter Fink aff001;  Ulrike Pfeiffenberger aff001;  Tina Bernthaler aff001;  Sophie Schober aff001;  Kerstin E. Thonhauser aff001;  Thomas Rülicke aff001
Působiště autorů: Institute of Laboratory Animal Science, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria aff001;  Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224576


Intra-bone marrow transplantation (IBMT) has been adapted for mouse models to improve the seeding efficiency of transplanted hematopoietic stem and progenitor cells. Commonly used injection volumes for IBMT into the tibia differ between 10 and 40 μL even though considerable amounts of injected cells leak into the blood circulation immediately after injection. Injection of 3 μL trypan blue into the tibia of dead BALB/c mice showed staining in large vessels of hind limbs, even without supporting circulation. We therefore tested the effective capacity of the medullary cavity of dissected tibiae and femora of different mouse strains by bioluminescence imaging after injection of luciferase expressing cells. Cell leakage was already observed at 3 μL of injection volume and the measured emission rate increased significantly when 5 and 10 μL of volume with the same cell concentration were injected. Surprisingly, increasing injection volumes containing constant cell amounts resulted in comparable emission rates, suggesting a similar amount of leaked and absorbed cells independent of the injection volume. However, the absorption of a specific amount of injected cells could not be confirmed, as the ratio of leaked to absorbed cells was similar between IBMT that were performed with a constant injection volume containing either low or high cell amounts. In summary, for optimal cell transplantation via IBMT in mice we suggest to inject a high concentrated cell suspension with a maximum injection volume of 3 μL.

Klíčová slova:

Bioluminescence – Bone marrow cells – Bone marrow transplantation – Luciferase – Mouse models – Hematopoietic stem cell transplantation


1. Valent P, Hadzijusufovic E, Grunt T, Karlic H, Peter B, Herrmann H et al. Ludwig Boltzmann Cluster Oncology (LBC ONC): first 10 years and future perspectives. Wien Klin Wochenschr. 2018;130: 517–529. doi: 10.1007/s00508-018-1355-7 30006759

2. Cui J, Wahl RL, Shen T, Fisher SJ, Recker E, Ginsburg D et al. Bone marrow cell trafficking following intravenous administration. Br J Haematol. 1999;107: 895–902. doi: 10.1046/j.1365-2141.1999.01779.x 10606901

3. Gao J, Li Y, Lu S, Wang M, Yang Z, Yan X et al. Enhanced in vivo motility of human umbilical cord blood hematopoietic stem/progenitor cells introduced via intra-bone marrow injection into xenotransplanted NOD/SCID mouse. Exp Hematol. 2009;37: 990–997. doi: 10.1016/j.exphem.2009.05.006 19481136

4. Lee MW, Kim HJ, Yoo KH, Kim DS, Yang JM, Kim HR et al. Establishment of a bioluminescent imaging-based in vivo leukemia model by intra-bone marrow injection. Int J Oncol. 2012;41: 2047–2056. doi: 10.3892/ijo.2012.1634 23007607

5. Pfeiffenberger U, Yau T, Fink D, Tichy A, Palme R, Egerbacher M et al. Assessment and refinement of intra-bone marrow transplantation in mice. Lab Anim. 2015;49: 121–131. doi: 10.1177/0023677214559627 25416608

6. Kushida T, Inaba M, Hisha H, Ichioka N, Esumi T, Ogawa R et al. Intra-bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood 2001;97: 3292–3299. doi: 10.1182/blood.v97.10.3292 11342461

7. Li Q, Hisha H, Yasumizu R, Fan T-X, Yang G-X, Li Q et al. Analyses of very early hemopoietic regeneration after bone marrow transplantation: comparison of intravenous and intrabone marrow routes. Stem Cells 2007;25: 1186–1194. doi: 10.1634/stemcells.2006-0354 17322105

8. Sanjuan-Pla A, Romero-Moya D, Prieto C, Bueno C, Bigas A, Menendez P. Intra-Bone Marrow Transplantation Confers Superior Multilineage Engraftment of Murine Aorta-Gonad Mesonephros Cells Over Intravenous Transplantation. Stem Cells Dev. 2016;25: 259–265. doi: 10.1089/scd.2015.0309 26603126

9. Yahata T, Ando K, Sato T, Miyatake H, Nakamura Y, Muguruma Y et al. A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood 2003;101: 2905–2913. doi: 10.1182/blood-2002-07-1995 12411299

10. Wang J, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y et al. SCID-repopulating cell activity of human cord blood-derived. Blood 2003;101: 2924–2931. 12480697

11. Eguchi H, Kuroiwa Y, Matsui A, Sada M, Nagaya N, Kawano S. Intra-bone marrow cotransplantation of donor mesenchymal stem cells in pig-to-NOD/SCID mouse bone marrow transplantation facilitates short-term xenogeneic hematopoietic engraftment. Transplant Proc. 2008;40: 574–577. doi: 10.1016/j.transproceed.2008.02.012 18374132

12. Beerman I, Luis TC, Singbrant S, Lo Celso C, Mendez-Ferrer S. The evolving view of the hematopoietic stem cell niche. Exp Hematol. 2017;50: 22–26. doi: 10.1016/j.exphem.2017.01.008 28189651

13. Carbonneau CL, Despars G, Rojas-Sutterlin S, Fortin A, Le O, Hoang T et al. Ionizing radiation-induced expression of INK4a/ARF in murine bone marrow-derived stromal cell populations interferes with bone marrow homeostasis. Blood 2012;119: 717–726. doi: 10.1182/blood-2011-06-361626 22101896

14. Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nature Metabolism 2019;1: 236–250. doi: 10.1038/s42255-018-0016-5 31620676

Článek vyšel v časopise


2019 Číslo 11