Characterisation and microbial community analysis of lipid utilising microorganisms for biogas formation


Autoři: Alexis Nzila aff001;  Shaikh Abdur Razzak aff002;  Saravanan Sankara aff001;  Mazen K. Nazal aff003;  Marwan Al-Momani aff004;  Gi-Ung Kang aff005;  Jerald Conrad Ibal aff005;  Jae-Ho Shin aff005
Působiště autorů: Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia aff001;  Departments of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia aff002;  Research Institute, Center for Environment and Water, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia aff003;  Departments of Mathematics & Statistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia aff004;  School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea aff005
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224989

Souhrn

In the anaerobic process, fat-oil-grease (FOG) is hydrolysed to long-chain fatty acids (LCFAs) and glycerol (GLYC), which are then used as substrates to produce biogas. The increase in FOG and LCFAs inhibits methanogenesis, and so far, most work investigating this inhibition has been carried out when FOG or LCFAs were used as co-substrates. In the current work, the inhibition of methanogenesis by FOG, LCFAs and GLYC was investigated when used as sole substrates. To gain more insight on the dynamics of this process, the change of microbial community was analysed using 16S rRNA gene amplicon sequencing. The results indicate that, as the concentrations of cooking olive oil (CO, which represents FOG) and LCFAs increase, methanogenesis is inhibited. For instance, at 0.01 g. L-1 of FOG, the rate of biogas formation was around 8 ml.L-1.day-1, and this decreased to <4 ml.L-1.day-1 at 40 g.L-1. Similar results were observed with the use of LCFAs. However, GLYC concentrations up to 100g.L-1 did not affect the rate of biogas formation. Acidic pH, temperature > = 45°C and NaCl > 3% led to a significant decrease in the rate of biogas formation. Microbial community analyses were carried out from samples from 3 different bioreactors (CO, OLEI and GLYC), on day 1, 5 and 15. In each bioreactor, microbial communities were dominated by Proteobacteria, Firmicutes and Bacteroidetes phyla. The most important families were Enterobacteriaceae, Pseudomonadaceae and Shewanellaceae (Proteobacteria phylum), Clostridiacea and Ruminococcaceae (Firmicutes) and Porphyromonadaceae and Bacteroidaceae (Bacteroidetes). In CO bioreactor, Proteobacteria bacteria decreased over time, while those of OLEI and GLYC bioreactors increased. A more pronounced increase in Bacteroidetes and Firmicutes were observed in CO bioreactor. The methanogenic archaea Methanobacteriaceae and Methanocorpusculaceae were identified. This analysis has shown that a set of microbial population is selected as a function of the substrate.

Klíčová slova:

Archaea – Biogas – Glycerol – Chemical oxygen demand – Oils – Oleic acid – Salinity – Methanogens


Zdroje

1. Jain S, Jain S, Wolf IT, Lee J, Tong YW. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sust Energ Rev. 2015; 52: 142–154.

2. Mao C, Feng Y, Wang X, Ren G. Review on research achievements of biogas from anaerobic digestion. Renew Sust Energ Rev. 2015; 45: 540–555.

3. Nzila A. Mini review: Update on bioaugmentation in anaerobic processes for biogas production. Anaerobe. 2017; 46: 3–12. doi: 10.1016/j.anaerobe.2016.11.007 27887952

4. Junemann S, Kleinbolting N, Jaenicke S, Henke C, Hassa J, Nelkner J, et al. Bioinformatics for NGS-based metagenomics and the application to biogas research. J Biotechnol. 2017; 261: 10–23. doi: 10.1016/j.jbiotec.2017.08.012 28823476

5. He J, Wang X, Yin XB, Li Q, Li X, Zhang Y F, et al. Insights into biomethane production and microbial community succession during semi-continuous anaerobic digestion of waste cooking oil under different organic loading rates. AMB Express. 2018; 8: 92. doi: 10.1186/s13568-018-0623-2 29858702

6. Kougias PG, Treu L, Campanaro S, Zhu X, Angelidaki I. Dynamic functional characterization and phylogenetic changes due to Long Chain Fatty Acids pulses in biogas reactors. Sci Rep. 2016; 6: 28810. doi: 10.1038/srep28810 27353502

7. Sousa DZ, Pereira MA, Smidt H, Stams AJ, Alves MM. Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors. FEMS Microbiol Ecol. 2007; 60: 252–265. doi: 10.1111/j.1574-6941.2007.00291.x 17374128

8. Sousa DZ, Pereira MA, Stams AJ, Alves MM, Smidt H. Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. Appl Environ Microbiol. 2007; 73: 1054–1064. doi: 10.1128/AEM.01723-06 17158619

9. Cavaleiro AJ, Pereira MA, Alves M. Enhancement of methane production from long chain fatty acid based effluents. Bioresour Technol. 2008; 99: 4086–4095. doi: 10.1016/j.biortech.2007.09.005 18006304

10. Long JH, Aziz TN, Reyes Iii FLdl, Ducoste JJ. Anaerobic co-digestion of fat, oil, and grease (FOG): A review of gas production and process limitations. Process Saf Environ Protect. 2012; 90: 231–245.

11. Koster IW, Cramer A. Inhibition of methanogenesis from acetate in granular sludge by long-chain Fatty acids. Appl Environ Microbiol. 1987; 53: 403–409. 16347288

12. Angelidaki I, Ahring BK. Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl Environ Microbiol. 1992; 37: 808–812.

13. Rasit N, Idris A, Harun R, Wan Ab Karim Ghani WA. Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: An overview. Renew Sust Energ Rev. 2015; 45: 351–358.

14. Ziels RM, Karlsson A, Beck DAC, Ejlertsson J, Yekta SS, Bjorn A, et al. Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge. Water Res. 2016; 103: 372–382. doi: 10.1016/j.watres.2016.07.043 27486949

15. Silva SA, Cavaleiro AJ, Pereira MA, Stams AJM, Alves MM, Sousa D Z, et al. Long-term acclimation of anaerobic sludges for high-rate methanogenesis from LCFA. Biomass Bioenerg. 2014; 67: 297–303.

16. Mendes AA, Pereira EB, de Castro HF. Effect of the enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic biodigestion. Biochem Engineer J. 2006; 32: 185–190.

17. Sowada J, Schmalenberger A, Ebner I, Luch A, Tralau T. Degradation of benzo[a]pyrene by bacterial isolates from human skin. FEMS Microbiol Ecol. 2014; 88: 129–139. doi: 10.1111/1574-6941.12276 24372170

18. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30.

19. Cirne DG, Paloumeta X, Bjornssona L, Alvesb MM, Mattiasson B. Anaerobic digestion of lipid-rich waste—Effects of lipid concentration. Renew Energ 2007; 32: 965–975.

20. Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci. 2008; 34: 755–781.

21. Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour Technol. 2008; 99: 4044–4064. doi: 10.1016/j.biortech.2007.01.057 17399981

22. Achinas S, Achinas V, Euverink GJW. A Technological Overview of Biogas Production from Biowaste. Engineering. 2017; 3: 299–307.

23. De Vrieze J, Hennebel T, Boon N, Verstraete W. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol. 2012; 112: 1–9. doi: 10.1016/j.biortech.2012.02.079 22418081

24. Chipasa KB, Medrzycka K. Behavior of lipids in biological wastewater treatment processes. J Ind Microbiol Biotechnol. 2006; 33: 635–645. doi: 10.1007/s10295-006-0099-y 16491352

25. Hwu C-S, Lettinga G. Acute toxicity of oleate to acetate-utilizing methanogens in mesophilic and thermophilic anaerobic sludges. Enzyme Microb Technol. 1997; 21: 297–301.

26. Wang S, Hou X, Su H. Exploration of the relationship between biogas production and microbial community under high salinity conditions. Scientific Reports. 2017; 7: 1149. doi: 10.1038/s41598-017-01298-y 28442730

27. Nisola GM, Chon ES, Shon HK, Tian D, Chun DJ, Gwon EM, et al. Cell immobilized FOG-Trap system for fat, oil, and grease removal from restaurant wastewater. J Environ Eng ASCE. 2009; 135: 876–884.

28. Sousa DZ, Salvador AF, Ramos J, Guedes AP, Barbosa SG, Stams AJM, et al. http://hdl.handle.net/1822/26327. Effect of long-chain fatty acids (LCFA) on the prevalence and viability of hydrogenotrophic methanogens. 2013. Access on 10 Sept 2019.

29. Shin H, Kim SH, Le CY, Nam SY. Inhibitory effects of long-chain fatty acids on VFA degradation and beta-oxidation. Water Sci Technol. 2003; 47: 139–146.

30. Komatsu T, Hanaki K, Matsuo T. Prevention of Lipid Inhibition in Anaerobic Processes by Introducing a Two-Phase System. Water Sci Technol. 1991; 23: 1189–1200.

31. Rinzema A, Boone M, van Knippenberg K, Lettinga G. Bactericidal Effect of Long Chain Fatty Acids in Anaerobic Digestion. Water Environment Research. 1994; 66: 40–49.

32. Zhou X, Meile L, Kreuzer M, Zeitz JO. The Effect of Saturated Fatty Acids on Methanogenesis and Cell Viability of Methanobrevibacter ruminantium. Archaea. 2013; 2013: 9.

33. Viana MB, Freitas AV, Leitão RC, Pinto GAS, Santaella ST. Anaerobic digestion of crude glycerol: a review. Environ Technol Rev. 2012; 1: 81–92.

34. Zahedi S, Solera R, García-Morales JL, Ennouri H, Sales D. Evaluation of the effect of glycerol supplementation on the anaerobic digestion of real municipal solid waste in batch mode. Fuel. 2017; 193: 15–21.

35. Wu Y, Wang X, Tay MQX, Oh S, Yang L, Tang C, et al. Metagenomic insights into the influence of salinity and cytostatic drugs on the composition and functional genes of microbial community in forward osmosis anaerobic membrane bioreactors. Chem Engin J. 2017; 326: 462–469.

36. An D, Brown D, Chatterjee I, Dong X, Ramos-Padron E, Wilson S, et al. Microbial community and potential functional gene diversity involved in anaerobic hydrocarbon degradation and methanogenesis in an oil sands tailings pond. Genome. 2013; 56: 612–618. doi: 10.1139/gen-2013-0083 24237342

37. Sousa DZ, Pereira MA, Alves JI, Smidt H, Stams AJ, Alves MM, et al. Anaerobic microbial LCFA degradation in bioreactors. Water Sci Technol. 2008; 57: 439–444. doi: 10.2166/wst.2008.090 18309224

38. Loginova LG, Bogdanova TI, Seregina LM. [Growth of obligate-thermophilic bacteria on a medium with paraffin]. Mikrobiologiia. 1981; 50: 49–54. 7219220

39. Beschkov V, Sapundzhiev T, Angelov I. Modelling of Biogas Production from Glycerol by Anaerobic Process in a Baffled Multi-Stage Digestor. Biotechnol Biotec Eq. 2012; 26: 3244–3248.

40. Wang X, Dong T, Zhang A, Fang Y, Chen D, Zhao C, et al. Isolation of bacteria capable of hydrogen production in dark fermentation and intensification of anaerobic granular sludge activity. Int J Hydrogen Energ. 2019; 44: 15853–15862.

41. Zarilla KA, Perry JJ. Deoxyribonucleic Acid Homology and Other Comparisons among Obligately Thermophilic Hydrocarbonoclastic Bacteria, with a Proposal for Thermoleophilum minutum sp. nov.†. Int J Syst Evol Microbiol. 1986; 36: 13–16.

42. Su X, Zhao W, Xia D. The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam. Biotechnol Biofuels. 2018; 11: 245. doi: 10.1186/s13068-018-1237-2 30202440

43. Baek G, Kim J, Kim J, Lee C. Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion. Energies. 2018; 11: 107.

44. Dubé C-D, Guiot SR. Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review. In: Guebitz GM, Bauer A, Bochmann G, Gronauer A, Weiss S, editors. Biogas Science and Technology.2015. Cham: Springer International Publishing. pp. 101–115.

45. Zarilla KA, Perry JJ. Bacillus thermoJeovorans, sp. nov., a Species of Obligately Thermophilic Hydrocarbon Utilizing Endospore-forming Bacterial. System Appl Microbial 1987; 9: 258–264

46. Kim H-J, Oh S-W. Performance comparison of 5 selective media used to detect Staphylococcus aureus in foods. Food Sc Biotechnol. 2010; 19: 1097–1101.

47. Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang Q, et al. Petroleum Hydrocarbon-Degrading Bacteria for the Remediation of Oil Pollution Under Aerobic Conditions: A Perspective Analysis. Front Microbiol. 2018; 9.

48. Fontana A, Campanaro S, Treu L, Kougias PG, Cappa F, Morelli L, et al. Performance and genome-centric metagenomics of thermophilic single and two-stage anaerobic digesters treating cheese wastes. Water Res. 2018; 134: 181–191. doi: 10.1016/j.watres.2018.02.001 29427960

49. Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels. 2016; 9: 26. doi: 10.1186/s13068-016-0441-1 26839589

50. Duda RM, Silva Vantini J, Martins LS, Mello Varani A, Lemos MVF, Ferro MIT, et al. A balanced microbiota efficiently produces methane in a novel high-rate horizontal anaerobic reactor for the treatment of swine wastewater. Bioresour Technol. 2015; 197.

51. Goux X, Calusinska M, Lemaigre S, Marynowska M, Klocke M, Udelhoven T, et al. Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery. Biotechnol Biofuels. 2015; 8.

52. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013; 31.

53. Yang Y, Yu K, Xia Y, Lau FT, Tang DT, Fung WC, et al. Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Appl Microbiol Biotechnol. 2014; 98: 5709–5718. doi: 10.1007/s00253-014-5648-0 24633414

54. Baserba MG, Angelidaki I, Karakashev D. Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process. Bioresour Technol. 2012; 106: 74–81. doi: 10.1016/j.biortech.2011.12.020 22206917

55. Shigematsu T, Tang Y, Mizuno Y, Kawaguchi H, Morimura S, Kida K, et al. Microbial diversity of mesophilic methanogenic consortium that can degrade long-chain fatty acids in chemostat cultivation. J Biosci Bioeng. 2006; 102: 535–544. doi: 10.1263/jbb.102.535 17270719

56. Sorkhoh NA, Ibrahim AS, Ghannoum MA, Radwan SS. High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Appl Microbiol Applied Biotechnol. 1993; 39: 123–126.

57. Ozbayram EG, Akyol C, Ince B, Karakoc C, Ince O. Rumen bacteria at work: bioaugmentation strategies to enhance biogas production from cow manure. J Appl Microbiol. 2018; 124: 491–502. doi: 10.1111/jam.13668 29240970

58. Hahnke S, Maus I, Wibberg D, Tomazetto G, Pühler A, Klocke M,et al. Complete genome sequence of the novel Porphyromonadaceae bacterium strain ING2-E5B isolated from a mesophilic lab-scale biogas reactor. J Biotechnol. 2015; 193: 34–36. doi: 10.1016/j.jbiotec.2014.11.010 25444871

59. Granada CE, Hasan C, Marder M, Konrad O, Vargas LK, Passaglia LMP, et al. Biogas from slaughterhouse wastewater anaerobic digestion is driven by the archaeal family Methanobacteriaceae and bacterial families Porphyromonadaceae and Tissierellaceae. Renew Energy. 2018; 118: 840–846.

60. Regueiro L, Lema JM, Carballa M. Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks. Bioresour Technol. 2015; 197: 208–216. doi: 10.1016/j.biortech.2015.08.076 26340029

61. Stolze Y, Bremges A, Maus I, Puhler A, Sczyrba A, Schlüter A, et al. Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants. Microb Biotechnol. 2018; 11: 667–679. doi: 10.1111/1751-7915.12982 29205917

62. Poehlein A, Schneider D, Soh M, Daniel R, Seedorf H. Comparative Genomic Analysis of Members of the Genera Methanosphaera and Methanobrevibacter Reveals Distinct Clades with Specific Potential Metabolic Functions. Archaea. 2018; 2018: 9.

63. Zamanzadeh M, Hagen LH, Svensson K, Linjordet R, Horn SJ. Biogas production from food waste via co-digestion and digestion- effects on performance and microbial ecology. Scientific Reports. 2017; 7: 17664. doi: 10.1038/s41598-017-15784-w 29247239

64. Venkiteshwaran K, Bocher B, Maki J, Zitomer D. Relating Anaerobic Digestion Microbial Community and Process Function. Microbiol insights. 2016; 8: 37–44. doi: 10.4137/MBI.S33593 27127410

65. Kushkevych I, Vítězová M, Vítěz T, Kováč J, Kaucká P, Jesionek W, et al. A new combination of substrates: biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018. pp. 119.

66. Savant DV, Ranade DR. Application of Methanobrevibacter acididurans in anaerobic digestion. Water Sci Technol. 2004; 50: 109–114.

67. Zhou J, Zhang R, Liu F, Yong X, Wu X, Zheng T, et al. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour Technol. 2016; 217: 44–49. doi: 10.1016/j.biortech.2016.02.077 26944458

68. Rui J, Li J, Zhang S, Yan X, Wang Y, LI X. The core populations and co-occurrence patterns of prokaryotic communities in household biogas digesters. Biotechnol Biofuels. 2015; 8: 158. doi: 10.1186/s13068-015-0339-3 26413157

69. Pyzik A, Ciezkowska M, Krawczyk PS, Sobczak A, Drewniak L, Dziembowski A, et al. Comparative analysis of deep sequenced methanogenic communities: identification of microorganisms responsible for methane production. Microb Cell Fact. 2018; 17: 197. doi: 10.1186/s12934-018-1043-3 30572955

70. Gilmore SP, Lankiewicz TS, Wilken SE, Brown JL, Sexton JA, Henske JK et al. Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for Biomass Degradation. ACS Synth Biol. 2019.


Článek vyšel v časopise

PLOS One


2019 Číslo 11