On sorption hysteresis in wood: Separating hysteresis in cell wall water and capillary water in the full moisture range

Autoři: Maria Fredriksson aff001;  Emil Engelund Thybring aff002
Působiště autorů: Division of Building Materials, Department of Building and Environmental Technology, Lund University, Lund, Sweden aff001;  Biomass Science and Technology, Forest Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225111


Moisture influences most physical wood properties and plays an important role in degradation processes. Like most other porous materials, wood exhibits sorption hysteresis. That is, the moisture content is higher if equilibrium is reached by desorption than if it is reached by absorption under the same ambient climate conditions. The mechanism of moisture uptake by wood are different in the hygroscopic and over-hygroscopic moisture ranges and due to methodical issues, most studies of sorption hysteresis have been performed in the hygroscopic range. In the present study, total sorption hysteresis was separated into hysteresis in cell wall water and capillary water respectively in the whole moisture range by a novel combination of experimental techniques. Wood specimens were conditioned to several high moisture contents using a new system based on the pressure plate technique, and the distinction between cell wall water and capillary water was done with differential scanning calorimetry. The results showed that sorption hysteresis in wood cell walls exists in the whole moisture range. The cell walls were not saturated with water until the whole wood specimen was saturated which contradicts the long-held dogma that cell walls are saturated before significant amounts of capillary water are present in wood.

Klíčová slova:

Cell walls – Cellulose – Ceramics – Humidity – Sorption – Surface water – Desorption – Isotherms


1. Hofstetter K, Hinterstoisser B, Salmen L. Moisture uptake in native cellulose—the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose. 2006;13(2):131–45. doi: 10.1007/s10570-006-9055-2

2. Askfelt H, Alexandersson M, Ristinmaa M. Transient transport of heat, mass, and momentum in paperboard including dynamic phase change of water. International Journal of Engineering Science. 2016;109:54–72. doi: 10.1016/j.ijengsci.2016.08.005

3. Weiss ND, Felby C, Thygesen LG. Water retention value predicts biomass recalcitrance for pretreated lignocellulosic materials across feedstocks and pretreatment methods. Cellulose. 2018;25(6):3423–34. doi: 10.1007/s10570-018-1798-z

4. Jeoh T, Karuna N, Weiss ND, Thygesen LG. Two-Dimensional 1H-Nuclear Magnetic Resonance Relaxometry for Understanding Biomass Recalcitrance. ACS Sustain Chem Eng. 2017;5(10):8785–95. doi: 10.1021/acssuschemeng.7b01588

5. Fredriksson M, Thybring EE. Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose. 2018;25(8):4477–85. doi: 10.1007/s10570-018-1898-9

6. Kekkonen PM, Ylisassi A, Telkki V-V. Absorption of water in thermally modified pine wood as studied by nuclear magnetic resonance. The Journal of Physical Chemistry C. 2014;118(4):2146–53. doi: 10.1021/jp411199r

7. Niklewski J, Isaksson T, Frühwald Hansson E, Thelandersson S. Moisture conditions of rain-exposed glue-laminated timber members: the effect of different detailing. Wood Mat Sci Eng. 2018;13(3):129–40. doi: 10.1080/17480272.2017.1384758

8. Häglund M. Moisture content penetration in wood elements under varying boundary conditions. Wood Sci Technol. 2007;41(6):477–90.

9. Fortin Y. Moisture content—matric potential relationship and water flow properties of wood at high moisture contents [Dissertation]. Vancouver: University of British Columbia; 1979.

10. Salin J-G. Drying of liquid water in wood as influenced by the capillary fiber network. Dry Tech. 2008;26(5):560–7. doi: 10.1080/07373930801944747

11. Engelund ET, Thygesen LG, Svensson S, Hill CAS. A critical discussion of the physics of wood-water interactions. Wood Sci Technol. 2013;47(1):141–61. doi: 10.1007/s00226-012-0514-7

12. Hill CAS, Keating Barbara A, Jalaludin Z, Mahrdt E. A rheological description of the water vapour sorption kinetics behaviour of wood invoking a model using a canonical assembly of Kelvin-Voigt elements and a possible link with sorption hysteresis. Holzforschung. 2012;66(1):35. doi: 10.1515/HF.2011.115

13. Chen M, Coasne B, Guyer R, Derome D, Carmeliet J. Role of hydrogen bonding in hysteresis observed in sorption-induced swelling of soft nanoporous polymers. Nature Communications. 2018;9(1):3507. doi: 10.1038/s41467-018-05897-9 30158573

14. Tiemann HD. Effect of moisture upon the strength and stiffness of wood. U.S. Department of Agriculture, 1906 Contract No.: Forest Service—Bulletin 70.

15. Kollmann FFP, Côté WA. Principles of wood science and technology I. Solid wood. Berlin: Springer-Verlag; 1968.

16. Gezici-Koç Ö, Erich SJF, Huinink HP, van der Ven LGJ, Adan OCG. Bound and free water distribution in wood during water uptake and drying as measured by 1D magnetic resonance imaging. Cellulose. 2017;24(2):535–53. doi: 10.1007/s10570-016-1173-x

17. Hernández RE, Pontin M. Shrinkage of three tropical hardwoods below and above the fiber saturation point. Wood Fiber Sci. 2006;38(3):474–83.

18. Almeida G, Hernandez RE. Changes in physical properties of yellow birch below and above the fiber saturation point. Wood Fiber Sci. 2006;38(1):74–83.

19. Almeida G, Hernandez RE. Changes in physical properties of tropical and temperate hardwoods below and above the fiber saturation point. Wood Sci Technol. 2006;40(7):599–613. doi: 10.1007/s00226-006-0083-8

20. Zelinka SL, Glass SV, Jakes JE, Stone DS. A solution thermodynamics definition of the fiber saturation point and the derivation of a wood–water phase (state) diagram. Wood Sci Technol. 2015;50(3):443–62. doi: 10.1007/s00226-015-0788-7

21. Hoffmeyer P, Engelund ET, Thygesen LG. Equilibrium moisture content (EMC) in Norway spruce during the first and second desorptions. Holzforschung. 2011;65(6):875–82. doi: 10.1515/HF.2011.112

22. Salmén L, Larsson PA. On the origin of sorption hysteresis in cellulosic materials. Carbohydr Polym. 2018;182:15–20. https://doi.org/10.1016/j.carbpol.2017.11.005 29279110

23. Wadsö L, Svennberg K, Dueck A. An experimentally simple method for measuring sorption isotherms. Dry Tech. 2004;22(10):2427–40.

24. Fredriksson M, Johansson P. A method for determination of absorption isotherms at high relative humidity levels: measurements on lime-silica brick and Norway spruce (Picea abies (L.) Karst.). Dry Tech. 2016;34(1):132–41. doi: 10.1080/07373937.2015.1041035

25. Tremblay C, Cloutier A, Fortin Y. Moisture content water potential relationship of red pine sapwood above the fiber saturation point and determination of the effective pore size distribution. Wood Sci Technol. 1996;30(5):361–71.

26. Penner E. Suction and its use as a measure of moisture contents and potentials in porous materials. In: Wexler A, editor. Humidity and Moisture Vol 4 Principles and methods of measuring moisture in liquids and solids. New York: Reinhold; 1965. p. 245–52.

27. Cloutier A, Fortin Y. Wood drying modelling based on the water potential concept—hysteresis effects. Dry Tech. 1994;12(8):1793–814.

28. Simpson LA, Barton AFM. Determination of the fibre saturation point in whole wood using differential scanning calorimetry. Wood Sci Technol. 1991;25(4):301–8. doi: 10.1007/BF00225469

29. Zelinka SL, Lambrecht MJ, Glass SV, Wiedenhoeft AC, Yelle DJ. Examination of water phase transitions in Loblolly pine and cell wall components by differential scanning calorimetry. Thermochim Acta. 2012;533(Supplement C):39–45. https://doi.org/10.1016/j.tca.2012.01.015.

30. Passarini L, Zelinka SL, Glass SV, Hunt CG. Effect of weight percent gain and experimental method on fiber saturation point of acetylated wood determined by differential scanning calorimetry. Wood Sci Technol. 2017;51 (6):1291–305. doi: 10.1007/s00226-017-0963-0

31. Digaitis R, Thybring EE, Künniger T, Thygesen LG. Synergistic effects of enzymatic decomposition and mechanical stress in wood degradation. Wood Sci Technol. 2017;51(5):1067–80. doi: 10.1007/s00226-017-0939-0

32. Nakamura K, Hatakeyama T, Hatakeyama H. Studies on Bound Water of Cellulose by Differential Scanning Calorimetry. Textile Research Journal. 1981;51(9):607–13. doi: 10.1177/004051758105100909

33. Hatakeyama T, Hirose S, Hatakeyama H. Differential scanning calorimetric studies on bound water in 1,4-dioxane acidolysis lignin. Die Makromolekulare Chemie. 1983;184(6):1265–74. doi: 10.1002/macp.1983.021840616

34. Berthold J, Rinaudo M, L. S. Association of water to polar groups; estimations by an adsorption model for ligno-cellulosic materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects V 112. 1996;(2):117–29.

35. Berthold J, Desbrieres J, Rinaudo M, Salmen L. Types of adsorbed water in relation to the ionic groups and their counterions for some cellulose derivatives. Polymer. 1994;35(26):5729–36. doi: 10.1016/s0032-3861(05)80048-5

36. Cloutier A, Fortin Y. Moisture-content—water potential relationship of wood from saturated to dry conditions. Wood Sci Technol. 1991;25(4):263–80.

37. Greenspan L. Humidity fixed points of binary saturated aqueous solutions. J Res NBS A Phys Ch. 1977;81A(1):89–96.

38. Zimmer B, Grosser D, Mehlen S. Untersuchung zur Tracheideniänge von Dougiasienholz. Holz als Roh- und Werkstoff. 1998;56(4):252-. doi: 10.1007/s001070050313

39. Erickson HD, Harrison AT. Douglas-fir wood quality studies part I: Effects of age and stimulated growth on wood density and anatomy. Wood Sci Technol. 1974;8(3):207–26. doi: 10.1007/BF00352024

40. Thybring EE, Thygesen LG, Burgert I. Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures. Cellulose. 2017;24(6):2375–84. doi: 10.1007/s10570-017-1278-x

41. Menon RS, Mackay AL, Hailey JRT, Bloom M, Burgess AE, Swanson JS. An NMR determination of the physiological water distribution in wood during drying. J Appl Polym Sci. 1987;33. doi: 10.1002/app.1987.070330408

42. Hernández RE, Cáceres CB. Magnetic resonance microimaging of liquid water distribution in sugar maple wood below fiber saturation point. Wood Fiber Sci. 2010;42(3):259–72.

43. Passarini L, Malveau C, Hernández R. Distribution of the equilibrium moisture content in four hardwoods below fiber saturation point with magnetic resonance microimaging. Wood Sci Technol. 2015;49(6):1251–68. doi: 10.1007/s00226-015-0751-7

44. Hill CAS, Forster SC, Farahani MRM, Hale MDC, Ormondroyd GA, Williams GR. An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood. Int Biodeter Biodegr. 2005;55(1):69–76. http://dx.doi.org/10.1016/j.ibiod.2004.07.003.

45. Flournoy Douglas S, Kirk TK, Highley TL. Wood Decay by Brown-Rot Fungi: Changes in Pore Structure and Cell Wall Volume. Holzforschung. 1991;45(5):383. doi: 10.1515/hfsg.1991.45.5.383

46. Flournoy Douglas S, Paul Jennifer A, Kirk TK, Highley TL. Changes in the Size and Volume of Pores in Sweetgum Wood During Simultaneous Rot by Phanerochaete chrysosporium Burds. Holzforschung. 1993;47(4):297. doi: 10.1515/hfsg.1993.47.4.297

47. Borrega M, Kärenlampi PP. Cell wall porosity in Norway spruce wood as affected by hihg-temperature drying. Wood Fiber Sci. 2011;43(2):206–14.

48. Maloney TC, Paulapuro H. The formation of pores in the cell wall. Journal of Pulp and Paper Science. 1999;25(12):430–6.

49. Zanotti J-M, Bellissent-Funel MC, Kolesnikov AI. Phase transitions of interfacial water at 165 and 240 K. Connections to bulk water physics and protein dynamics. The European Physical Journal Special Topics. 2007;141(1):227–33. doi: 10.1140/epjst/e2007-00045-7

50. Endo A, Yamamoto T, Inagi Y, Iwakabe K, Ohmori T. Characterization of Nonfreezable Pore Water in Mesoporous Silica by Thermoporometry. The Journal of Physical Chemistry C. 2008;112(24):9034–9. doi: 10.1021/jp8016248

51. Ishikiriyama K, Todoki M. Evaluation of water in silica pores using differential scanning calorimetry. Thermochim Acta. 1995;256(2):213–26. https://doi.org/10.1016/0040-6031(94)02174-M.

Článek vyšel v časopise


2019 Číslo 11