#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Ecosystem functioning in urban grasslands: The role of biodiversity, plant invasions and urbanization


Autoři: Gabriela Onandia aff001;  Conrad Schittko aff002;  Masahiro Ryo aff002;  Maud Bernard-Verdier aff002;  Tina Heger aff002;  Jasmin Joshi aff002;  Ingo Kowarik aff002;  Arthur Gessler aff002
Působiště autorů: Research Platform “Data”, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany aff001;  Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany aff002;  Biodiversity Research and Systematic Botany, University of Potsdam, Potsdam, Germany aff003;  Institute of Biology, Freie Universität Berlin, Berlin, Germany aff004;  Division of Zoology, Freie Universität Berlin, Berlin, Germany aff005;  Restoration Ecology, Technical University of Munich, Freising, Germany aff006;  Institute for Landscape and Open Space, HSR Hochschule für Technik, Rapperswil, Switzerland aff007;  Department of Ecology, Ecosystem Science and Plant Ecology, Technische Universität Berlin, Berlin, Germany aff008;  Department of Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland aff009;  Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland aff010
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0225438

Souhrn

Urbanization is driving the transformation of natural and rural ecosystems worldwide by affecting both the abiotic environment and the biota. This raises the question whether urban ecosystems are able to provide services in a comparable way to their non-urban counterparts. In urban grasslands, the effects of urbanization-driven ecological novelty and the role of plant diversity in modulating ecosystem functioning have received little attention. In this study, we assessed the influence of biodiversity, abiotic and biotic novelty on ecosystem functioning based on in situ measurements in non-manipulated grasslands along an urbanization gradient in Berlin (Germany). We focused on plant aboveground biomass (AGB), intrinsic water-use efficiency (iWUE) and 15N enrichment factor (Δδ15N) as proxies for biomass production, water and N cycling, respectively, within grassland communities, and tested how they change with plant biogeographic status (native vs alien), functional group and species identity. Approximately one third of the forb species were alien to Berlin and they were responsible for 13.1% of community AGB. Community AGB was positively correlated with plant-species richness. In contrast, iWUE and Δδ15N were mostly determined by light availability (depicted by sky view factor) and urban parameters like the percentage of impervious surface or human population density. We found that abiotic novelty potentially favors aliens in Berlin, mainly by enhancing their dispersal and fitness under drought. Mainly urban parameters indicating abiotic novelty were significantly correlated to both alien and native Δδ15N, but to AGB and iWUE of alien plants only, pointing to a stronger impact of abiotic novelty on N cycling compared to C and water cycling. At the species level, sky view factor appeared to be the prevailing driver of photosynthetic performance and resource-use efficiency. Although we identified a significant impact of abiotic novelty on AGB, iWUE and Δδ15N at different levels, the relationship between species richness and community AGB found in the urban grasslands studied in Berlin was comparable to that described in non-urban experimental grasslands in Europe. Hence, our results indicate that conserving and enhancing biodiversity in urban ecosystems is essential to preserve ecosystem services related to AGB production. For ensuring the provision of ecosystem services associated to water and N use, however, changes in urban abiotic parameters seem necessary.

Klíčová slova:

Biodiversity – Grasslands – Invasive species – Species diversity – Urban ecology – Urban ecosystems – Urban environments – Ecosystem functioning


Zdroje

1. Ellis EC. Ecology in an anthropogenic biosphere. Ecol Monogr. 2015;85(3):287–331.

2. United Nations. World urbanization prospects: The 2014 revision, highlights. department of economic and social affairs. Population Division, United Nations. 2014;32.

3. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, et al. Global change and the ecology of cities. Science. 2008;319(5864):756–60. doi: 10.1126/science.1150195 18258902

4. Oke T. The heat island of the urban boundary layer: characteristics, causes and effects. Wind climate in cities: Springer; 1995. p. 81–107.

5. Madrid L, Díaz-Barrientos E, Madrid F. Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere. 2002;49(10):1301–8. doi: 10.1016/s0045-6535(02)00530-1 12489727

6. Wang M, Liu R, Chen W, Peng C, Markert B. Effects of urbanization on heavy metal accumulation in surface soils, Beijing. J Environ Sci. 2018;64:328–34.

7. Jeffery S, Gardi C. Soil biodiversity under threat—a review. Acta Soc Zool Bohem. 2010;74(1–2):7–12.

8. Rao P, Hutyra LR, Raciti SM, Templer PH. Atmospheric nitrogen inputs and losses along an urbanization gradient from Boston to Harvard Forest, MA. Biogeochemistry. 2014;121(1):229–45.

9. Scolozzi R, Geneletti D. A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. Environ Impact Assess Rev. 2012;36:9–22.

10. Antrop M. Landscape change and the urbanization process in Europe. Landscape Urban Plann. 2004;67(1–4):9–26.

11. Kowarik I, von der Lippe M. Pathways in plant invasions. Biol Invasions: Springer; 2008. p. 29–47.

12. Aronson MF, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences. 2014;281(1780):20133330. doi: 10.1098/rspb.2013.3330 24523278

13. Duncan RP, Clemants SE, Corlett RT, Hahs AK, McCarthy MA, McDonnell MJ, et al. Plant traits and extinction in urban areas: a meta‐analysis of 11 cities. Global Ecol Biogeogr. 2011;20(4):509–19.

14. McDonnell MJ, Hahs AK. Adaptation and adaptedness of organisms to urban environments. Annu Rev Ecol Evol S. 2015;46:261–80.

15. Kowarik I, von der Lippe M. Plant population success across urban ecosystems: A framework to inform biodiversity conservation in cities. J Appl Ecol. 2018;55(5):2354–61.

16. Kühn I, Brandl R, Klotz S. The flora of German cities is naturally species rich. Evol Ecol Res. 2004;6(5):749–64.

17. Hahs AK, McDonnell MJ, McCarthy MA, Vesk PA, Corlett RT, Norton BA, et al. A global synthesis of plant extinction rates in urban areas. Ecol Lett. 2009;12(11):1165–73. doi: 10.1111/j.1461-0248.2009.01372.x 19723284

18. Kowarik I. Novel urban ecosystems, biodiversity, and conservation. Environ Pollut. 2011;159(8–9):1974–83. doi: 10.1016/j.envpol.2011.02.022 21435761

19. Wania A, Kühn I, Klotz S. Plant richness patterns in agricultural and urban landscapes in Central Germany—spatial gradients of species richness. Landscape Urban Plann. 2006;75(1–2):97–110.

20. Groffman PM, Cavender-Bares J, Bettez ND, Grove JM, Hall SJ, Heffernan JB, et al. Ecological homogenization of urban USA. Front Ecol Environ. 2014;12(1):74–81.

21. Heger T, Bernard-Verdier M, Gessler A, Greenwood AD, Grossart H-P, Hilker M, et al. Towards an integrative, eco-evolutionary understanding of ecological novelty: Studying and communicating interlinked effects of global change. Bioscience. 2019: doi: 10.1093/biosci/biz095 31719711

22. Weigelt A, Weisser W, Buchmann N, Scherer-Lorenzen M. Biodiversity for multifunctional grasslands: equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosciences. 2009;6(8):1695–706.

23. Fischer LK, von der Lippe M, Kowarik I. Urban land use types contribute to grassland conservation: The example of Berlin. Urban For Urban Gree. 2013;12(3):263–72.

24. Klaus VH. Urban grassland restoration: a neglected opportunity for biodiversity conservation. Restor Ecol. 2013;21(6):665–9.

25. Sikorski P, Wińska-Krysiak M, Chormański J, Krauze K, Kubacka K, Sikorska D. Low-maintenance green tram tracks as a socially acceptable solution to greening a city. Urban For Urban Gree. 2018;35:148–64.

26. Thompson K, Hodgson JG, Smith RM, Warren PH, Gaston KJ. Urban domestic gardens (III): composition and diversity of lawn floras. J Veg Sci. 2004;15(3):373–8.

27. Van der Walt L, Cilliers S, Du Toit M, Kellner K. Conservation of fragmented grasslands as part of the urban green infrastructure: how important are species diversity, functional diversity and landscape functionality? Urban Ecosyst. 2015;18(1):87–113.

28. Zeeman BJ, McDonnell MJ, Kendal D, Morgan JW. Biotic homogenization in an increasingly urbanized temperate grassland ecosystem. J Veg Sci. 2017;28(3):550–61.

29. Chollet S, Brabant C, Tessier S, Jung V. From urban lawns to urban meadows: Reduction of mowing frequency increases plant taxonomic, functional and phylogenetic diversity. Landscape Urban Plann. 2018;180:121–4.

30. Rudolph M, Velbert F, Schwenzfeier S, Kleinebecker T, Klaus VH. Patterns and potentials of plant species richness in high‐and low‐maintenance urban grasslands. Appl Veg Sci. 2017;20(1):18–27.

31. Niemelä J, Saarela S-R, Söderman T, Kopperoinen L, Yli-Pelkonen V, Väre S, et al. Using the ecosystem services approach for better planning and conservation of urban green spaces: a Finland case study. Biodivers Conserv. 2010;19(11):3225–43.

32. Caldeira MC, Ryel RJ, Lawton JH, Pereira JS. Mechanisms of positive biodiversity–production relationships: insights provided by δ13C analysis in experimental Mediterranean grassland plots. Ecol Lett. 2001;4(5):439–43.

33. Craven D, Isbell F, Manning P, Connolly J, Bruelheide H, Ebeling A, et al. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371(1694):20150277.

34. Guerrero-Ramírez NR, Craven D, Reich PB, Ewel JJ, Isbell F, Koricheva J, et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat Ecol Evol. 2017;1(11):1639. doi: 10.1038/s41559-017-0325-1 28970481

35. Hector A, Schmid B, Beierkuhnlein C, Caldeira M, Diemer M, Dimitrakopoulos P, et al. Plant diversity and productivity experiments in European grasslands. Science. 1999;286(5442):1123–7. doi: 10.1126/science.286.5442.1123 10550043

36. Hooper DU, Chapin F, Ewel J, Hector A, Inchausti P, Lavorel S, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 2005;75(1):3–35.

37. Spehn E, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, et al. Ecosystem effects of biodiversity manipulations in European grasslands. Ecol Monogr. 2005;75(1):37–63.

38. Tilman D, Downing JA. Biodiversity and stability in grasslands. Nature. 1994;367(6461):363.

39. Weisser WW, Roscher C, Meyer ST, Ebeling A, Luo G, Allan E, et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic Appl Ecol. 2017;23:1–73.

40. Thompson GL, Kao-Kniffin J. Diversity enhances NPP, N retention, and soil microbial diversity in experimental urban grassland assemblages. PloS one. 2016;11(5):e0155986. doi: 10.1371/journal.pone.0155986 27243768

41. Schittko C, Hawa M, Wurst S. Using a multi-trait approach to manipulate plant functional diversity in a biodiversity-ecosystem function experiment. PloS one. 2014;9(6):e99065. doi: 10.1371/journal.pone.0099065 24897501

42. Thompson GL, Kao-Kniffin J. Applying Biodiversity and Ecosystem Function Theory to Turfgrass Management. Crop Sci. 2017;57(supplement1):S-238–S-48.

43. Kaye JP, McCulley R, Burke I. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Global Change Biol. 2005;11(4):575–87.

44. Golubiewski NE. Urbanization increases grassland carbon pools: Effects of landscaping in Colorado's front range. Ecol Appl. 2006;16(2):555–71. doi: 10.1890/1051-0761(2006)016[0555:uigcpe]2.0.co;2 16711044

45. Vilà M, Hulme PE. Impact of biological invasions on ecosystem services: Springer; 2017.

46. Schirmel J, Bundschuh M, Entling MH, Kowarik I, Buchholz S. Impacts of invasive plants on resident animals across ecosystems, taxa, and feeding types: a global assessment. Global Change Biol. 2016;22(2):594–603.

47. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, et al. Ecological impacts of invasive alien plants: a meta‐analysis of their effects on species, communities and ecosystems. Ecol Lett. 2011;14(7):702–8. doi: 10.1111/j.1461-0248.2011.01628.x 21592274

48. Chapin Iii FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, et al. Consequences of changing biodiversity. Nature. 2000;405(6783):234. doi: 10.1038/35012241 10821284

49. Loreau M. Biodiversity and ecosystem functioning: A mechanistic model. Proc Natl Acad Sci USA. 1998;95:632–5636. doi: 10.1073/pnas.95.2.632

50. De Boeck HJ, Lemmens CM, Bossuyt H, Malchair S, Carnol M, Merckx R, et al. How do climate warming and plant species richness affect water use in experimental grasslands? Plant Soil. 2006;288(1–2):249–61.

51. Spehn E, Scherer‐Lorenzen M, Schmid B, Hector A, Caldeira M, Dimitrakopoulos P, et al. The role of legumes as a component of biodiversity in a cross‐European study of grassland biomass nitrogen. Oikos. 2002;98(2):205–18.

52. Scherling C, Roscher C, Giavalisco P, Schulze E-D, Weckwerth W. Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS One. 2010;5(9):e12569. doi: 10.1371/journal.pone.0012569 20830202

53. Zavalloni C, Gielen B, De Boeck HJ, Lemmens CM, Ceulemans R, Nijs I. Greater impact of extreme drought on photosynthesis of grasslands exposed to a warmer climate in spite of acclimation. Physiol Plant. 2009;136(1):57–72. doi: 10.1111/j.1399-3054.2009.01214.x 19374719

54. Maxwell K, Johnson GN. Chlorophyll fluorescence—a practical guide. J Exp Bot. 2000;51(345):659–68. doi: 10.1093/jxb/51.345.659 10938857

55. Weiwei L, Xinxiao Y, Guodong J, Hanzhi L, Ziqiang L. Responses of Intrinsic Water-use Efficiency and Tree Growth to Climate Change in Semi-Arid Areas of North China. Sci Rep-UK. 2018;8(1):308.

56. Verheyen K, Bulteel H, Palmborg C, Olivié B, Nijs I, Raes D, et al. Can complementarity in water use help to explain diversity–productivity relationships in experimental grassland plots? Oecologia. 2008;156(2):351–61. doi: 10.1007/s00442-008-0998-x 18305961

57. Kleinebecker T, Hölzel N, Prati D, Schmitt B, Fischer M, Klaus VH. Evidence from the real world: 15N natural abundances reveal enhanced nitrogen use at high plant diversity in Central European grasslands. J Ecol. 2014;102(2):456–65.

58. Amt für Statistik, Berlin-Brandenburg. 2017. [Available from: https://www.statistik-berlin-brandenburg.de/home.asp.

59. Quanz J, Ulrich S, Fenner D, Holtmann A, Eimermacher J. Micro-scale variability of air temperature within a local climate zone in Berlin, Germany, during summer. Climate. 2018;6(1):5.

60. LUA. Brandenburg State Environmental Office. Catalogue of Natural Habitats and Species of Appendices I and II of the Habitats Directive in Brandenburg: German Institute for Standardization, Beuth Verlag, GmbH, Berlin; 2002.

61. ScapeLabs Experimental Platform. 2019. [Available from: https://www.bbib.org/scapelabs.html.

62. Rao CR. Diversity and dissimilarity coefficients: a unified approach. Theor Popul Biol. 1982;21(1):24–43.

63. Jäger EJ, Werner K. Rothmaler-Exkursionsflora von Deutschland: Springer; 2011.

64. Prasse R, Ristow M, Klemm G, Machatzi B, Raus T, Scholz H, et al. Liste der wildwachsenden Gefäßpflanzen des Landes Berlin: mit Roter Liste. 2001.

65. Seitz B, Ristow M, Meißner J, Machatzi B, Sukopp H. Rote Liste und Gesamtartenliste der etablierten Farn-und Blütenpflanzen von Berlin: Universitätsverlag der TU Berlin; 2018.

66. Schittko C, Bernard-Verdier M, Heger T, Buchholz S, Kowarik I, von der Lippe M, et al. A multidimensional framework for measuring biotic novelty: How novel is a community? bioRxiv. 2019:824045. Cited 31 October 2019.

67. Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, et al. TRY–a global database of plant traits. Global Change Biol. 2011;17(9):2905–35.

68. Klotz S, Kühn I, Durka W. Biolflor: Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland–Schriftenreihe für Vegetationskunde 38. Bonn, Bundesamt für Naturschutz–http://wwwufzde/biolflor/indexjsp. 2002.

69. Geoportal Berlin of the Senate Department for Urban Development and Housing. 2019. [Available from: www.stadtentwicklung.berlin.de/geoinformation/fis-broker/.

70. QGIS Development Team, 2016. QGIS geographic information system. Open Source Geospatial Foundation Project. 2016 [Available from: http://qgis.osgeo.org.

71. DIN ISO 13878: 1998. Soil quality—Determination of total nitrogen by dry combustion: German Institute for Standardization, Beuth Verlag, GmbH, Berlin.

72. DIN ISO 19730: 2008. Soil quality–Extraction of trace elements from soil using ammonium nitrate solution: German Institute for Standardization, Beuth Verlag, GmbH, Berlin.

73. Weather Uderground. 2019. [Available from: http://www.weatherunderground.com.

74. Bernard J, Bocher E, Petit G, Palominos S. Sky view factor calculation in urban context: computational performance and accuracy analysis of two open and free GIS tools. Climate. 2018;6(3):60.

75. Lindberg F, Holmer B, Thorsson S. SOLWEIG 1.0–Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int J Biometeorol. 2008;52(7):697–713. doi: 10.1007/s00484-008-0162-7 18523814

76. Lindberg F, Grimmond C. Nature of vegetation and building morphology characteristics across a city: influence on shadow patterns and mean radiant temperatures in London. Urban Ecosyst. 2011;14(4):617–34.

77. Botta‐Dukát Z. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci. 2005;16(5):533–40.

78. Carthey AJ, Banks PB. When does an alien become a native species? A vulnerable native mammal recognizes and responds to its long-term alien predator. PloS one. 2012;7(2):e31804. doi: 10.1371/journal.pone.0031804 22355396

79. Pearse IS, Harris DJ, Karban R, Sih A. Predicting novel herbivore–plant interactions. Oikos. 2013;122(11):1554–64.

80. Strauss SY, Lau JA, Carroll SP. Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Ecol Lett. 2006;9(3):357–74. doi: 10.1111/j.1461-0248.2005.00874.x 16958902

81. Verhoeven KJ, Biere A, Harvey JA, Van Der Putten WH. Plant invaders and their novel natural enemies: who is naive? Ecol Lett. 2009;12(2):107–17. doi: 10.1111/j.1461-0248.2008.01248.x 19143824

82. Scurlock JM, Johnson K, Olson RJ. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biol. 2002;8(8):736–53.

83. Schreiber U, Bilger W. Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Progress in Botany/Fortschritte der Botanik: Springer; 1993. p. 151–73.

84. Genty B, Briantais J-M, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA-Gen Subjects. 1989;990(1):87–92.

85. Rascher U, Liebig M, Lüttge U. Evaluation of instant light‐response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell Environ. 2000;23(12):1397–405.

86. Coplen TB. Guidelines and recommended terms for expression of stable‐isotope‐ratio and gas‐ratio measurement results. Rapid Commun Mass SP. 2011;25(17):2538–60.

87. Grossiord C, Granier A, Gessler A, Scherer‐Lorenzen M, Pollastrini M, Bonal D. Application of Loreau & Hector's (2001) partitioning method to complex functional traits. Methods Ecol Evol. 2013;4(10):954–60.

88. Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Biol. 1989;40(1):503–37.

89. Ehleringer JR, Hall AE, Farquhar GD. Stable isotopes and plant carbon-water relations: Academic Press San Diego; 1993.

90. Farquhar GD, O'Leary MH, Berry JA. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct Plant Biol. 1982;9(2):121–37.

91. Betts RA, Jones CD, Knight JR, Keeling RF, Kennedy JJ. El Niño and a record CO2 rise. Nat Clim Change. 2016;6:806.

92. O'Leary MH. Carbon isotope fractionation in plants. Phytochemistry. 1981;20(4):553–67.

93. Farquhar G, Richards R. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct Plant Biol. 1984;11(6):539–52.

94. Craine JM, Brookshire E, Cramer MD, Hasselquist NJ, Koba K, Marin-Spiotta E, et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil. 2015;396(1–2):1–26.

95. Malone ET, Abbott BW, Klaar MJ, Kidd C, Sebilo M, Milner AM, et al. Decline in ecosystem δ 13 C and mid-successional nitrogen loss in a two-century postglacial chronosequence. Ecosystems. 2018;21(8):1659–75.

96. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

97. Strobl C, Boulesteix A-L, Zeileis A, Hothorn T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics. 2007;8(1):25.

98. Hapfelmeier A, Hothorn T, Ulm K, Strobl C. A new variable importance measure for random forests with missing data. Stat Comput. 2014;24(1):21–34.

99. Bradter U, Kunin WE, Altringham JD, Thom TJ, Benton TG. Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods Ecol Evol. 2013;4(2):167–74.

100. Nicodemus KK, Malley JD, Strobl C, Ziegler A. The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics. 2010;11(1):110.

101. Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A. Conditional variable importance for random forests. BMC Bioinformatics. 2008;9(1):307.

102. Ryo M, Rillig MC. Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere. 2017;8(11). doi: 10.1002/ecs2.2002

103. Hapfelmeier A, Ulm K. A new variable selection approach using random forests. Comput Stat Data Anal. 2013;60:50–69.

104. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: prediction, inference and data mining. Springer-Verlag, New York. 2009.

105. R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2018 [Available from: https://www.R-project.org.

106. Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, et al. mlr: Machine Learning in R. J Mach Learn Res. 2016;17(1):5938–42.

107. Strobl C, Hothorn T, Zeileis A. Party on! A new, conditional variable importance measure for random forests available in the party package. Technical Report Number 050, 2009, Department of Statistics, University of Munich. 2009:1–5.

108. Onandia G, Acame CM, Schittko C, Kowarik I, Gessler A, Seitz B, et al. 2019. Ecosystem functioning in urban grasslands: the role of biodiversity, abiotic and biotic novelty. Database: Open Research Data ZALF. Available from: https://www.doi.org/10.4228/ZALF.DK.111.

109. Leimer S, Bischoff S, Boch S, Busch V, Escher P, Fischer M, et al. Does plant diversity affect the water balance of established grassland systems? Ecohydrology. 2018;11(4):e1945.

110. Díaz S, Lavorel S, Chapin FS, Tecco PA, Gurvich DE, Grigulis K. Functional diversity—at the crossroads between ecosystem functioning and environmental filters. Terrestrial ecosystems in a changing world: Springer; 2007. p. 81–91.

111. Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature. 2001;412(6842):72. doi: 10.1038/35083573 11452308

112. Dimitrakopoulos PG, Schmid B. Biodiversity effects increase linearly with biotope space. Ecol Lett. 2004;7(7):574–83.

113. Ingerpuu N, Liira J, Pärtel M. Vascular plants facilitated bryophytes in a grassland experiment. Plant Ecol. 2005;180(1):69–75.

114. Gornall JL, Woodin SJ, Jónsdóttir IS, van der Wal R. Balancing positive and negative plant interactions: how mosses structure vascular plant communities. Oecologia. 2011;166(3):769–82. doi: 10.1007/s00442-011-1911-6 21279654

115. Warwick S, Francis A. The biology of invasive alien plants in Canada. 6. Berteroa incana (L.) DC. Can J Plant Sci. 2006;86(4):1297–309.

116. von der Lippe M, Kowarik I. Long‐distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol. 2007;21(4):986–96. doi: 10.1111/j.1523-1739.2007.00722.x 17650249

117. Ansong M, Pickering C, Arthur JM. Modelling seed retention curves for eight weed species on clothing. Austral Ecol. 2015;40(7):765–74.

118. Shields EJ, Dauer JT, VanGessel MJ, Neumann G. Horseweed (Conyza canadensis) seed collected in the planetary boundary layer. Weed Sci. 2006;54(6):1063–7.

119. Bullock JM, Bonte D, Pufal G, da Silva Carvalho C, Chapman DS, García C, et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol Evol. 2018.

120. Rebele F, Lehmann C. Biological flora of central Europe: Calamagrostis epigejos (L.) Roth. Flora. 2001;196(5):325–44.

121. Brunzel S, Fischer SF, Schneider J, Jetzkowitz J, Brandl R. Neo‐and archaeophytes respond more strongly than natives to socio‐economic mobility and disturbance patterns along an urban–rural gradient. J Biogeogr. 2009;36(5):835–44.

122. Farquhar GD, Lloyd J. Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. Stable isotopes and plant carbon-water relations: Elsevier; 1993. p. 47–70.

123. Bachmann D, Gockele A, Ravenek JM, Roscher C, Strecker T, Weigelt A, et al. No evidence of complementary water use along a plant species richness gradient in temperate experimental grasslands. PloS one. 2015;10(1):e0116367. doi: 10.1371/journal.pone.0116367 25587998

124. Smedley MP, Dawson TE, Comstock JP, Donovan LA, Sherrill DE, Cook CS, et al. Seasonal carbon isotope discrimination in a grassland community. Oecologia. 1991;85(3):314–20. doi: 10.1007/BF00320605 28312034

125. Tsialtas J, Handley L, Kassioumi M, Veresoglou D, Gagianas A. Interspecific variation in potential water‐use efficiency and its relation to plant species abundance in a water‐limited grassland. Funct Ecol. 2001;15(5):605–14.

126. Guderle M, Bachmann D, Milcu A, Gockele A, Bechmann M, Fischer C, et al. Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Funct Ecol. 2018;32(1):214–27.

127. Pereira P, Gimeìnez-Morera A, Novara A, Keesstra S, Jordán A, Masto R, et al. The impact of road and railway embankments on runoff and soil erosion in eastern Spain. Hydrol Earth Syst Sci. 2015;12(12).

128. Walter J, Essl F, Englisch T, Kiehn M. Neophytes in Austria: habitat preferences and ecological effects. Neobiota. 2005;6:13–25.

129. Quinet M, Descamps C, Coster Q, Lutts S, Jacquemart A-L. Tolerance to water stress and shade in the invasive Impatiens parviflora. Int J Plant Sci. 2015;176(9):848–58.

130. Fenn ME, Poth MA, Terry JD, Blubaugh TJ. Nitrogen mineralization and nitrification in a mixed-conifer forest in southern California: controlling factors, fluxes, and nitrogen fertilization response at a high and low nitrogen deposition site. Can J Forest Res. 2005;35(6):1464–86.

131. Planchuelo G, von Der Lippe M, Kowarik I. Untangling the role of urban ecosystems as habitats for endangered plant species. Landscape Urban Plann. 2019;189:320–34.

132. Fischer LK, Honold J, Cvejić R, Delshammar T, Hilbert S, Lafortezza R, et al. Beyond green: Broad support for biodiversity in multicultural European cities. Global Environ Change. 2018;49:35–45.

133. Southon GE, Jorgensen A, Dunnett N, Hoyle H, Evans KL. Biodiverse perennial meadows have aesthetic value and increase residents’ perceptions of site quality in urban green-space. Landscape Urban Plann. 2017;158:105–18.

134. Roscher C, Karlowsky S, Milcu A, Gessler A, Bachmann D, Jesch A, et al. Functional composition has stronger impact than species richness on carbon gain and allocation in experimental grasslands. PloS one. 2019;14(1):e0204715. doi: 10.1371/journal.pone.0204715 30703101


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#