Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane

Autoři: R. Vazquez-Muñoz aff001;  A. Meza-Villezcas aff001;  P. G. J. Fournier aff002;  E. Soria-Castro aff003;  K. Juarez-Moreno aff001;  A. L. Gallego-Hernández aff004;  N. Bogdanchikova aff001;  R. Vazquez-Duhalt aff001;  A. Huerta-Saquero aff001
Působiště autorů: Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México aff001;  Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México aff002;  Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México aff003;  Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora, México aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224904


The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10–12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: <0.5), an additive effect by combining AgNPs and chloramphenicol (FICI: 0.5 to 1), whereas no effect was found with AgNPs and β-lactam antibiotics combinations. Flow cytometry and TEM analysis showed that sublethal concentrations of AgNPs (6–7 μg mL-1) altered the bacterial membrane potential and caused ultrastructural damage, increasing the cell membrane permeability. No chemical interactions between AgNPs and antibiotics were detected. We propose an experimental supported mechanism of action by which combinatorial effect of antimicrobials drives synergy depending on their specific target, facilitated by membrane alterations generated by AgNPs. Our results provide a deeper understanding about the synergistic mechanism of AgNPs and antibiotics, aiming to combat antimicrobial infections efficiently, especially those by multi-drug resistant microorganisms, in order to mitigate the current crisis due to antibiotic resistance.

Klíčová slova:

Antibiotics – Antimicrobials – Bacillus subtilis – Cell membranes – Permeability – Salmonella typhimurium – Staphylococcus aureus – Transmission electron microscopy


1. Dye C. After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc Lond B Biol Sci. The Royal Society; 2014;369: 20130426. doi: 10.1098/rstb.2013.0426 24821913

2. Fonkwo PN. Pricing infectious disease. The economic and health implications of infectious diseases. EMBO Rep. 2008;9 Suppl 1: S13–S17. doi: 10.1038/embor.2008.110 18578017

3. Fothergill AW. Antifungal Susceptibility Testing: Clinical Laboratory and Standards Institute (CLSI) Methods. In: Hall GS, editor. Interactions of Yeasts, Moulds, and Antifungal Agents. Totowa, NJ: Humana Press; 2012. pp. 65–74. doi: 10.1007/978-1-59745-134-5_2

4. Silbergeld EK, Graham J, Price LB. Industrial Food Animal Production, Antimicrobial Resistance, and Human Health. Annu Rev Public Health. 2008;29: 151–169. doi: 10.1146/annurev.publhealth.29.020907.090904 18348709

5. Done HY, Halden RU. Reconnaissance of 47 antibiotics and associated microbial risks in seafood sold in the United States. J Hazard Mater. 2015;282: 10–17. doi: 10.1016/j.jhazmat.2014.08.075 25449970

6. Paphitou NI. Antimicrobial resistance: Action to combat the rising microbial challenges. Int J Antimicrob Agents. 2013;42: S25–S28. doi: 10.1016/j.ijantimicag.2013.04.007 23684003

7. Cassell GH. Development of Antimicrobial Agents in the Era of New and Reemerging Infectious Diseases and Increasing Antibiotic Resistance. JAMA. American Medical Association; 2001;285: 601. doi: 10.1001/jama.285.5.601 11176866

8. Taubes G. The Bacteria Fight Back. Science (80-). 2008;321.

9. Huh AJ, Kwon YJ. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156: 128–145. doi: 10.1016/j.jconrel.2011.07.002 21763369

10. Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market [Internet]. International journal of nanomedicine. Dove Press; 2014. pp. 4357–4373. doi: 10.2147/IJN.S46900 25258527

11. Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30: 6333–6340. doi: 10.1016/j.biomaterials.2009.07.065 19698988

12. Elechiguerra JLJ, Burt JJL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005;3: 6. doi: 10.1186/1477-3155-3-6 15987516

13. Borrego B, Lorenzo G, Mota-Morales JD, Almanza-Reyes H, Mateos F, López-Gil E, et al. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine Nanotechnology, Biol Med. 2016;12: 1185–1192. doi: 10.1016/j.nano.2016.01.021 26970026

14. Romero-Urbina DG, Lara HH, Velázquez-Salazar JJ, Arellano-Jiménez MJ, Larios E, Srinivasan A, et al. Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles. Beilstein J Nanotechnol. 2015;6: 2396–2405. doi: 10.3762/bjnano.6.246 26734530

15. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16: 2346–53. doi: 10.1088/0957-4484/16/10/059 20818017

16. Ansari MA., Khan HM, Khan A. A., Malik A., Sultan A., Shahid M, et al. Evaluation of antibacterial activity of silver nanoparticles against MSSA and MRSA on isolates from skin infections. Biol Med. 2011;3: 141–146.

17. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance [Internet]. Advanced Drug Delivery Reviews. Elsevier B.V.; 2013. pp. 1803–1815. doi: 10.1016/j.addr.2013.07.011 23892192

18. Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: Alternatives against drug-resistant pathogenic microbes [Internet]. Molecules. Multidisciplinary Digital Publishing Institute; 2016. p. 836. doi: 10.3390/molecules21070836 27355939

19. Dilnawaz F, Acharya S, Sahoo SK. Recent trends of nanomedicinal approaches in clinics. Int J Pharm. 2018;538: 263–278. doi: 10.1016/j.ijpharm.2018.01.016 29339248

20. Paul P, Verma SK, Kumar Panda P, Jaiswal S, Sahu BR, Suar M. Molecular insight to influential role of Hha–TomB toxin–antitoxin system for antibacterial activity of biogenic silver nanoparticles. Artif Cells, Nanomedicine Biotechnol. Taylor & Francis; 2018;46: S572–S584. doi: 10.1080/21691401.2018.1503598 30444141

21. Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry. Elsevier; 25 Nov 2015. doi: 10.1016/j.arabjc.2015.11.002

22. Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver Enhances Antibiotic Activity Against Gram-Negative Bacteria. Sci Transl Med. 2013;5: 190ra81–190ra81. doi: 10.1126/scitranslmed.3006276 23785037

23. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275: 177–182. doi: 10.1016/j.jcis.2004.02.012 15158396

24. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5: 916–924. doi: 10.1021/pr0504079 16602699

25. Li W-R, Xie X-B, Shi Q-S, Zeng H-Y, OU-Yang Y-S, Chen Y-B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85: 1115–1122. doi: 10.1007/s00253-009-2159-5 19669753

26. Cui L, Chen P, Chen S, Yuan Z, Yu C, Ren B, et al. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced raman spectroscopy. Anal Chem. American Chemical Society; 2013;85: 5436–5443. doi: 10.1021/ac400245j 23656550

27. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology. BioMed Central; 2011;9: 30. doi: 10.1186/1477-3155-9-30 21812950

28. Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol. American Chemical Society; 2008;42: 4583–4588. doi: 10.1021/es703238h 18605590

29. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3: 95–101. doi: 10.1016/j.nano.2006.12.001 17379174

30. Xu H, Qu F, Xu H, Lai W, Andrew Wang Y, Aguilar ZP, et al. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. BioMetals. Springer Netherlands; 2012;25: 45–53. doi: 10.1007/s10534-011-9482-x 21805351

31. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. Frontiers; 2016;7: 1831. doi: 10.3389/fmicb.2016.01831 27899918

32. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity [Internet]. Nanomedicine: Nanotechnology, Biology, and Medicine. Elsevier; 2016. pp. 789–799. doi: 10.1016/j.nano.2015.11.016 26724539

33. Shahverdi AAR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine Nanotechnology, Biol Med. 2007;3: 168–171. doi: 10.1016/j.nano.2007.02.001 17468052

34. Deng H, McShan D, Zhang Y, Sinha SS, Arslan Z, Ray PC, et al. Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics. Environ Sci Technol. 2016;50: 8840–8848. doi: 10.1021/acs.est.6b00998 27390928

35. Vazquez-Muñoz R, Avalos-Borja M, Castro-Longoria E. Ultrastructural Analysis of Candida albicans When Exposed to Silver Nanoparticles. Melo RC, editor. PLoS One. 2014;9: e108876. doi: 10.1371/journal.pone.0108876 25290909

36. Li P, Li J, Wu C, Wu Q, Li J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology. 2005;16: 1912–1917. doi: 10.1088/0957-4484/16/9/082

37. De Souza A, Mehta D, Leavitt RW. Bactericidal activity of combinations of Silver-Water Dispersion™ with 19 antibiotics against seven microbial strains. Curr Sci. 2006;91: 926–929. 0113891

38. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine Nanotechnology, Biol Med. Elsevier Inc.; 2010;6: 103–109. doi: 10.1016/j.nano.2009.04.006 19447203

39. Liu X, Ma L, Chen F, Liu J, Yang H, Lu Z. Synergistic antibacterial mechanism of Bi 2 Te 3 nanoparticles combined with the ineffective β-lactam antibiotic cefotaxime against methicillin-resistant Staphylococcus aureus. J Inorg Biochem. Elsevier; 2019;196: 110687. doi: 10.1016/j.jinorgbio.2019.04.001 31004991

40. Juarez-Moreno K, Gonzalez E, Girón-Vazquez N, Chávez-Santoscoy R, Mota-Morales J, Perez-Mozqueda L, et al. Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines. Hum Exp Toxicol. SAGE Publications; 2017;36: 931–948. doi: 10.1177/0960327116675206 27815378

41. Clinical & Laboratory Standards Institute: CLSI Guidelines [Internet]. [cited 9 Jun 2014]. http://clsi.org/

42. Vazquez-Muñoz R, Borrego B, Juárez-Moreno K, García-García M, Mota Morales JD, Bogdanchikova N, et al. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicol Lett. Elsevier; 2017;276: 11–20. doi: 10.1016/j.toxlet.2017.05.007 28483428

43. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 2012.

44. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52: 1–1. doi: 10.1093/jac/dkg301 12805255

45. Novo DJ, Perlmutter NG, Hunt RH, Shapiro HM. Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob Agents Chemother. 2000;44: 827–834. doi: 10.1128/aac.44.4.827-834.2000 10722477

46. NCCLS. Performance Standards for Antimicrobial Susceptibility Testing. M100-S17. Clinical and Laboratory Standars Institute—NCCLS. 2007. 1-56238-525-5

47. Yang Y, Xiang Y, Xu M. From red to green: The propidium iodide-permeable membrane of Shewanella decolorationis S12 is repairable. Sci Rep. 2015; doi: 10.1038/srep18583 26687136

48. Panáček A, Smékalová M, Večeřová R, Bogdanová K, Röderová M, Kolář M, et al. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf B Biointerfaces. 2016;142: 392–399. doi: 10.1016/j.colsurfb.2016.03.007 26970828

49. Panácek A, Smékalová M, Kilianová M, Prucek R, Bogdanová K, Věcěrová R, et al. Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules. Multidisciplinary Digital Publishing Institute; 2016;21: 26. doi: 10.3390/molecules21010026 26729075

50. Bharadwaj R, Vidya A, Dewan B, Pal A. An in vitro study to evaluate the synergistic activity of norfloxacin and metronidazole. Indian J Pharmacol. 2003;35: 220–226.

51. Kora AJ, Rastogi L. Enhancement of Antibacterial Activity of Capped Silver Nanoparticles in Combination with Antibiotics, on Model Gram-Negative and Gram-Positive Bacteria. Bioinorg Chem Appl. 2013;2013: 1–7. doi: 10.1155/2013/871097 23970844

52. Wishart DS. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. Oxford University Press; 2006;34: D668–D672. doi: 10.1093/nar/gkj067 16381955

Článek vyšel v časopise


2019 Číslo 11