Taxonomic and functional anuran beta diversity of a subtropical metacommunity respond differentially to environmental and spatial predictors

Autoři: Diego Anderson Dalmolin aff001;  Alexandro Marques Tozetti aff002;  Maria João Ramos Pereira aff001
Působiště autorů: Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil aff001;  Universidade do Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul, Brazil aff002;  Centre for Environmental and Marine Studies, Universidade de Aveiro, Aveiro, Portugal aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0214902


Anurans exhibit limited dispersion ability and have physiological and behavioural characteristics that narrow their relationships with both environmental and spatial predictors. So, the relative contributions of environmental and spatial predictors in the patterns of taxonomic and functional anuran beta diversity were examined in a metacommunity of 33 ponds along the coast of south Brazil. We expected that neutral processes and, in particular, niche-based processes could have similar influence on the taxonomic and functional beta diversity patterns. Distance-based methods (db-RDA) with variation partitioning were conducted with abundance data to examine taxonomic and functional facets and components (total, turnover and nestedness) in relation to environmental and spatial predictors. Processes determining metacommunity structure differed between the components of beta diversity and among taxonomic and functional diversity. While taxonomic beta diversity was further accounted by both environmental and spatial predictors, functional beta diversity responded more strongly to spatial predictors. These two contrasting patterns were different to what we had predicted, suggesting that while there is a taxonomic turnover mediated by environmental filters, the spatial distance promotes the trait dissimilarity between sites. In addition, our data confirm that neutral and niche-based processes operate on anuran metacommunities even at short geographic scales. Our results reinforce the idea that studies aiming to evaluate the patterns of structure in metacommunities should include different facets of diversity so that better interpretations can be achieved.

Klíčová slova:

Brazil – Community structure – Environmental geography – Permutation – Ponds – Species diversity – Taxonomy – Wetlands


1. Dobrovolski R, Melo A S, Cassemiro F A S, Diniz-Filho J A F. Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography. 2012; 21: 191–197. doi: 10.1111/j.1466-8238.2011.00671.x

2. Ricotta C, Pavoine S. A multiple-site dissimilarity measure for species presence/absence data and its relationship with nestedness and turnover. Ecological Indicators. 2015; 54: 203–206.

3. Du Y, Wen Z, Zhang J, Lv X, Cheng J, Ge D, et al. The roles of environment, space, and phylogeny in determining functional dispersion of rodents (Rodentia) in the Hengduan Mountains, China. Ecology and Evolution. 2017; 7(24): 10941–10951. 29299271

4. Ricotta C. Of beta diversity, variance, evenness, and dissimilarity. Ecology and Evolution. 2017; 7(13): 4835–4843. 28690812

5. Whittaker R H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30: 279–338. doi: 10.2307/1943563

6. Harrison S, Ross S J, Lawton J H. Beta Diversity on Geographic Gradients in Britain. Journal of Animal Ecology. 1992; 61(1): 151–158

7. Baselga A, Jiménez-Valverde A, Niccolini G. A multiple-site similarity measure independent of richness. Biology Letters. 2007; 3(6): 642–645. 17925273

8. Baselga A. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography. 2010; 19(1): 134–143.

9. Hill M J, Heino J, Thornhill I, Ryves D B, Wood P J. Effects of dispersal mode on the environmental and spatial correlates of nestedness and species turnover in pond communities. Oikos. 2017; 126(11): 1575–1585.

10. Wright D H, Reeves J H. Oecologia On the meaning and measurement of nestedness of species assemblages. Oecologia. 1992; 92: 416–428. doi: 10.1007/BF00317469 28312609

11. Ulrich W, Gotelli N J. Null Model Analysis of Species Nestedness Patterns. Ecology. 2007; 88(7): 1824–1831. 17645028

12. Leibold M A, Holyoak M, Mouquet N, Amarasekare P, Chase J M, Hoopes M F, et al. The metacommunity concept: a framework for multi‐scale community ecology. Ecology Letters. 2004; 7: 601–613.

13. Heino J, Melo A S, Siqueira T, Soininen J, Valanko S, Bini L M. Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshwater Biology. 2015; 60(5): 845–869.

14. Hubbell S P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Princeton University Press; 2001.

15. Cottenie K. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters. 2005; 8(11): 1175–1182.

16. Yang J, Swenson N G, Zhang G, Ci X, Min C, Sha L, et al. Local-scale Partitioning of Functional and Phylogenetic Beta Diversity in a Tropical Tree Assemblage. Scientific Reports. 2015; 5(1): 1–10.

17. Brown B L, Sokol E R, Skelton J, Tornwall B. Making sense of metacommunities: dispelling the mythology of a metacommunity typology. Oecologia. 2017; 183(3): 643–652. 28008474

18. Villéger S, Miranda J R, Hernández D F, Mouillot D. Contrasting changes in taxonomie vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications. 2010; 20(6): 1512–1522. 20945756

19. Arnan X, Cerdá X, Retana J. Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography. 2017; 40(3): 448–457.

20. De Bie T, Meester L D, Brendonck L, Martens K, Goddeeris B, Ercken D, et al. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters. 2012; 15(7): 740–747. 22583795

21. Brooks D R, Storkey J, Clark S J, Firbank L G, Petit S, Woiwod I P. Trophic links between functional groups of arable plants and beetles are stable at a national scale. Journal of Animal Ecology. 2012; 81(1): 4–13. 21883203

22. Yamada K, Tanaka Y, Era T, Nakaoka M. Environmental and spatial controls of macroinvertebrate functional assemblages in seagrass ecosystems along the Pacific coast of northern Japan. Global Ecology and Conservation. 2014; 2: 47–61.

23. Pakeman R J. Functional diversity indices reveal the impacts of land use intensification on plant community assembly. Journal of Ecology. 2011; 99(5): 1143–1151.

24. Mouillot D, Graham N A J, Villéger S, Mason N W H, Bellwood D R. A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution. 2013; 28(3): 167–177. 23141923

25. Meynard C N, Devictor V, Mouillot D, Thuiller W, Jiguet F, Mouquet N. Beyond taxonomic diversity patterns: How do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography. 2011; 20(6): 893–903.

26. Ribeiro J, Colli G R, Batista R, Soares A. Landscape and local correlates with anuran taxonomic, functional and phylogenetic diversity in rice crops. Landscape Ecology. 2017; 32(8): 1599–1612.

27. Cavender-Bares J, Kozak K H, Fine P V A, Kembel S W. The merging of community ecology and phylogenetic biology. Ecology Letters. 2009; 12(7): 693–715. 19473217

28. Arnan X, Cerdá X, Retana J. Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants. PeerJ. 2015. 3, e1241. 26468433

29. Prado V H M, Rossa-Feres D D C. Multiple determinants of anuran richness and occurrence in an agricultural region in South-eastern Brazil. Environmental Management. 2014; 53(4): 823–837. 24488040

30. Leão-Pires T A, Luiz A M, Sawaya R J. The complex roles of space and environment in structuring functional, taxonomic and phylogenetic beta diversity of frogs in the Atlantic Forest. PLoS ONE. 2018; 13(4): 1–20.

31. Wellborn G A, Skelly D K, Werner E E. Mechanisms Creating Community Structure Across a Freshwater Habitat Gradient. Annual Review of Ecology and Systematics. 2002; 27(1): 337–363.

32. Werner E E, Yurewicz K L, Skelly D K, Relyea R A. Turnover in an amphibian metacommunity: The role of local and regional factors. Oikos. 2007; 116(10): 1713–1725.

33. Luiz A M, Leão-Pires T A, Sawaya R J. Geomorphology drives amphibian beta diversity in Atlantic Forest Lowlands of southeastern Brazil. PLoS ONE, 11(5). 2016: 1–16.

34. Schalk C M, Montaña C G, Winemiller K O, Fitzgerald L A. Trophic plasticity, environmental gradients and food-web structure of tropical pond communities. Freshwater Biology, 62(3), 519–529.

35. Delatorre M, Cunha N, Raizer J, Ferreira V L. Evidence of stochasticity driving anuran metacommunity structure in the Pantanal wetlands. Freshwater Biology. 2015; 60(11): 2197–2207.

36. Melchior L G, Rossa-Feres D de C, da Silva F R. Evaluating multiple spatial scales to understand the distribution of anuran beta diversity in the Brazilian Atlantic Forest. Ecology and Evolution. 2017; 7(7): 2403–2413. 28405303

37. Knauth D S, Moreira L F B, Maltchik L. Partitioning tadpole beta diversity in highland ponds with different hydroperiods. Freshwater Science. 2018; 37 (May 2017), 000–000.

38. Provete D B, Gonçalves-Souza T, Garey M V, Rossa-Feres D. de C, Martins I A. Broad-scale spatial patterns of canopy cover and pond morphology affect the structure of a Neotropical amphibian metacommunity. Hydrobiologia. 2014; 734(1): 69–79.

39. Landeiro V L, Waldez F, Menin M. Spatial and environmental patterns of Amazonian anurans: Differences between assemblages with aquatic and terrestrial reproduction, and implications for conservation management. Natureza a Conservacao. 2014; 12(1): 42–46.

40. Ouchi-Melo L S, Meynard C N, Gonçalves-Souza T, Rossa-Feres D C. Integrating phylogenetic and functional biodiversity facets to guide conservation: a case study using anurans in a global biodiversity hotspot. Biodiversity and Conservation. 2018; (27):32–47.

41. Soininen J, Jamoneau A, Rosebery J, Passy S I. Global patterns and drivers of species and trait composition in diatoms. Global Ecology and Biogeography. 2016; 25(8): 940–950.

42. Asefa M, Cao M, Zhang G, Ci X, Li J, Yang J. Environmental filtering structures tree functional traits combination and lineages across space in tropical tree assemblages. Scientific Reports, 7(1), 1–11.

43. Wu N, Qu Y, Guse B, Makarevičiūtė K, To S, Riis T, Fohrer N. Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae. Ecology and Evolution. 2018; 8(5): 2947–2961. 29531708

44. McGill B J, Enquist B J, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution. 2006; 21(4): 178–185. 16701083

45. Lange K, Townsend C R, Matthaei C D. Can biological traits of stream invertebrates help disentangle the effects of multiple stressors in an agricultural catchment? Freshwater Biology. 2014; 59(12): 2431–2446.

46. RAMSAR. The List of Wetlands of International Importance. 2018. Availabe from [Accessed 15 March 2019]).

47. Maltchik L, Costa E S, Becker CG, Oliveira AE. Inventory of wetlands of Rio Grande do Sul (Brazil). Pesquisas: Botânica. 2003; 53: 89–100

48. Tagliani P R A. Estratégia de Planificação Ambiental para o Sistema Ecológico da Restinga da Lagoa dos Patos–Planície Costeira do Rio Grande do Sul. Thesis. 1995. São Carlos, Federal University of São Carlos.

49. Scott N J, Woodward B D. Surveys at breeding sites. In: Heyer WR, Donnelly MA, McDiarmid RW, Hayek LAC, Foster MS (eds) Measuring and monitoring biological diversity—standard methods for amphibians. Smithsonian Institution, Washington, DC. 1994: 84–92

50. Legendre P, Legendre LF. Numerical ecology. Oxford: Elsevier; 2012.

51. Dray S, Pélissier R, Couteron P, Fortin M J, Legendre P, Peres-Neto P R, et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs. 2012; 82(3): 257–275.

52. Vasconcelos T S, Rossa-Feres D C. Habitat heterogeneity and use of physical and acoustic space in anuran communities in Southeastern Brazil. Phyllomedusa. 2008; 7:127–142

53. Baselga A, Orme D, Villéger S, Bortoli D J, Leprieur F. 2013. betapart: Partitioning beta diversity into turnover and nestedness components. R package version 1.3. Available from

54. Cardoso Pedro, Rigal F, Carvalho J C, Fortelius M. BAT: Biodiversity Assessment Tools. R package version 1.6.0. Available from

55. Legendre P, Anderson M J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 1999; 69: 1–24. doi: 10.2307/2657192

56. Blanchet F G, Legendre P, Borcard D. Forward Selection of Explanatory Variables. Ecology. 2008; 89(9): 2623–2632. 18831183

57. Peres-Neto P, Legendre P, Dray S, Borcard D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology. 2006; 87(10): 2614–2625. 17089669

58. Oksanen J, Blanchet F G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5.4. 2019. Available from

59. Williams D D. The Biology of Temporary Waters. Oxford University Press, Oxford, UK. 2016.

60. Van Buskirk J. The costs of an inducible defense in anuran larvae. Ecology. 2000; 81(10): 2813–2821.[2813:TCOAID]2.0.CO;2

61. Van Buskirk J, Arioli M. Habitat specialization and adaptive phenotypic divergence of anuran populations. Journal of Evolutionary Biology. 2005; 18(3): 596–608. 15842489

62. Van Buskirk J, McCollum S A, Werner E E. Natural selection for environmentally induced phenotypes in tadpoles. Evolution. 1997; 51(6): 1983–1992. 28565118

63. Duellman W E, Trueb L. Biology of Amphibians. John Hopkins University Press, Baltimore; 1994.

64. Haddad C F B, Prado C P A. Reproductive modes of the Atlantic forest frogs. BioScience. 2005; 55(3): 208–217.[0207:RMIFAT]2.0.CO;2

65. Wells K. The ecology and behavior of amphibians. Univ. Chicago Press; 2007.

66. Olalla-Tárraga M A, Rodríguez M A. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Global Ecol. Biogeogr. 2007, (16): 606–617.

67. Gouveia S F, Correia I. Geographical clines of body size in terrestrial amphibians: water conservation hypothesis revisited. J. Biogeogr., 2016, (43): 2075–2084.

68. Richter-Boix A, Llorente G A, Montori A. Structure and dynamics of an amphibian metacommunity in two regions. Journal of Animal Ecology. 2007; 76(3): 607–618. 17439477

69. Heino J. Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinvertebrates. Ecology and Evolution. 2013; 3(2): 344–355. 23467653

70. Heino J, Tolonen K T. Ecological drivers of multiple facets of beta diversity in a lentic macroinvertebrate metacommunity. Limnology and Oceanography. 2017; 62(6): 2431–2444.

71. Mouchet M A, Villéger S, Mason N W, Mouillot D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology. 2010; 24: 867–876. doi: 10.1111/j.1365-2435.2010.01695.x

72. Zhang M, García Molinos J, Su G, Zhang H and Xu J. Spatially Structured Environmental Variation Plays a Prominent Role on the Biodiversity of Freshwater Macrophytes Across China. Front. Plant Sci., 2019, (10):161. doi: 10.3389/fpls.2019.00161 30853965

73. Heino J. A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology. 2011; 56(9): 1703–1722.

74. Saito V S, Cianciaruso M V, Siqueira T, Fonseca-Gessner A A, Pavoine S. Phylogenies and traits provide distinct insights about the historical and contemporary assembly of aquatic insect communities. Ecology and Evolution. 2016; 6(9): 2925–2937. 27217945

75. Spasojevic M J, Turner B L, Myers J A. When does intraspecific trait variation contribute to functional beta-diversity? Journal of Ecology. 2016; 104(2): 487–496.

76. Livingston G, Fukumori K, Provete D B, Kawachi M, Takamura N, Leibold M A. Predators regulate prey species sorting and spatial distribution in microbial landscapes. Journal of Animal Ecology. 2017; 86(3): 501–510. 28138991

77. Peres-Neto P R, Leibold M A, Dray S. Assessing the effects of spatial contingency and environmental filtering on metacommunity phylogenetics. Ecology. 2012; 93(8 SPEC. ISSUE): 14–30.

78. Monnet A C, Jiguet F, Meynard C N, Mouillot D, Mouquet N, Thuiller W, Devictor V. Asynchrony of taxonomic, functional and phylogenetic diversity in birds. Global Ecology and Biogeography. 2014; 23(7): 780–788. 25067904

79. Baselga A, Gómez-Rodríguez C, Lobo JM. Historical Legacies in World Amphibian Diversity Revealed by the Turnover and Nestedness Components of Beta Diversity. PLoS ONE. 2012; 7(2): e32341. doi: 10.1371/journal.pone.0032341 22384222

80. Si X, Baselga A, Leprieur F, Song X, Ding P. Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. Journal of Animal Ecology. 2016; 85(2): 409–418. 26619392

81. Cisneros L M, Fagan M E, Willig M R. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes. PeerJ. 2016; 4: e2551. 27761338

Článek vyšel v časopise


2019 Číslo 11