Evaluation of forearm vascular resistance during orthostatic stress: Velocity is proportional to flow and size doesn’t matter


Autoři: V. E. Claydon aff001;  J. P. Moore aff002;  E. R. Greene aff003;  O. Appenzeller aff004;  R. Hainsworth aff005
Působiště autorů: Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada aff001;  School of Sport, Health & Exercise Sciences, Bangor University, Bangor, Gwynedd, United Kingdom aff002;  Department of Biology and Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, United States of America aff003;  Department of Neurology, New Mexico Health Enhancement and Marathon Clinics Research Foundation, Albuquerque, New Mexico, United States of America aff004;  Division of Cardiovascular and Neuronal Remodeling, Faculty of Medicine, University of Leeds, Leeds, United Kingdom aff005
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224872

Souhrn

Background

The upright posture imposes a significant challenge to blood pressure regulation that is compensated through baroreflex-mediated increases in heart rate and vascular resistance. Orthostatic cardiac responses are easily inferred from heart rate, but vascular resistance responses are harder to elucidate. One approach is to determine vascular resistance as arterial pressure/blood flow, where blood flow is inferred from ultrasound-based measurements of brachial blood velocity. This relies on the as yet unvalidated assumption that brachial artery diameter does not change during orthostatic stress, and so velocity is proportional to flow. It is also unknown whether the orthostatic vascular resistance response is related to initial blood vessel diameter.

Methods

We determined beat-to-beat heart rate (ECG), blood pressure (Portapres) and vascular resistance (Doppler ultrasound) during a combined orthostatic stress test (head-upright tilting and lower body negative pressure) continued until presyncope. Participants were 16 men (aged 38.4±2.3 years) who lived permanently at high altitude (4450m).

Results

The supine brachial diameter ranged from 2.9–5.6mm. Brachial diameter did not change during orthostatic stress (supine: 4.19±0.2mm; tilt: 4.20±0.2mm; -20mmHg lower body negative pressure: 4.19±0.2mm, p = 0.811). There was no significant correlation between supine brachial artery diameter and the maximum vascular resistance response (r = 0.323; p = 0.29). Forearm vascular resistance responses evaluated using brachial arterial flow and velocity were strongly correlated (r = 0.989, p<0.00001) and demonstrated high equivalency with minimal bias (-6.34±24.4%).

Discussion

During severe orthostatic stress the diameter of the brachial artery remains constant, supporting use of brachial velocity for accurate continuous non-invasive orthostatic vascular resistance responses. The magnitude of the orthostatic forearm vascular resistance response was unrelated to the baseline brachial arterial diameter, suggesting that upstream vessel size does not matter in the ability to mount a vasoconstrictor response to orthostasis.

Klíčová slova:

Arteries – Blood – Blood flow – Blood pressure – Blood vessels – Heart rate – Hypotension


Zdroje

1. Hainsworth R, Claydon VE. Syncope and fainting. In: Bannister R, Mathias C, editors. Autonomic failure. Oxford University Press; 2012.

2. Bush VE, Wight VL, Brown CM, Hainsworth R. Vascular responses to orthostatic stress in patients with postural tachycardia syndrome (POTS), in patients with low orthostatic tolerance, and in asymptomatic controls. Clin Auton Res. 2000 Oct;10(0959–9851):279–84.

3. Wieling W, de Lange FJ, Jardine DL. The heart cannot pump blood that it does not receive. Front Physiol. 2014;5(1664-042X (Electronic)):360.

4. Fu Q, Witkowski S, Levine BD. Vasoconstrictor Reserve and Sympathetic Neural Control of Orthostasis. Circulation. 2004 Nov 2;110(18):2931–7. doi: 10.1161/01.CIR.0000146384.91715.B5 15505093

5. Goldstein DS, Holmes C, Frank SM, Naqibuddin M, Dendi R, Snader S, et al. Sympathoadrenal imbalance before neurocardiogenic syncope. AmJCardiol. 2003 Jan 1;91(0002–9149 (Print)):53–8.

6. Notarius CF, Murai H, Morris BL, Floras JS. Effect of Fitness on Reflex Sympathetic Neurovascular Transduction in Middle-Age Men. Med Sci Sport Exerc. 2012 Feb;44(2):232–7.

7. Protheroe CL, Ravensbergen HRJC, Inskip JA, Claydon VE. Tilt testing with combined lower body negative pressure: a &quot;gold standard&quot; for measuring orthostatic tolerance. J Vis Exp. 2013 Mar 21;(73):e4315. doi: 10.3791/4315 23542558

8. Brown CM, Hainsworth R. Forearm vascular responses during orthostatic stress in control subjects and patients with posturally related syncope. Clin Auton Res. 2000 Apr;10(0959–9851):57–61.

9. Claydon VE, Hainsworth R. Salt supplementation improves orthostatic cerebral and peripheral vascular control in patients with syncope. Hypertension. 2004;43(1524–4563):809–13.

10. el Bedawi KM, Hainsworth R. Combined head-up tilt and lower body suction: a test of orthostatic tolerance. Clin Auton Res. 1994 Apr;4(0959–9851):41–7.

11. Robergs RA, Icenogle M V, Hudson TL, Greene ER. Temporal inhomogeneity in brachial artery blood flow during forearm exercise. Med Sci Sports Exerc. 1997 Aug;29(8):1021–7. doi: 10.1097/00005768-199708000-00006 9268958

12. Newcomer SC, Sauder CL, Kuipers NT, Laughlin MH, Ray CA. Effects of posture on shear rates in human brachial and superficial femoral arteries. Am J Physiol Circ Physiol. 2008 Apr;294(4):H1833–9.

13. Padilla J, Young CN, Simmons GH, Deo SH, Newcomer SC, Sullivan JP, et al. Increased muscle sympathetic nerve activity acutely alters conduit artery shear rate patterns. Am J Physiol Circ Physiol. 2010 Apr;298(4):H1128–35.

14. Thijssen DHJ, Atkinson CL, Ono K, Sprung VS, Spence AL, Pugh CJA, et al. Sympathetic nervous system activation, arterial shear rate, and flow-mediated dilation. J Appl Physiol. 2014 May 15;116(10):1300–7. doi: 10.1152/japplphysiol.00110.2014 24699856

15. Salzer DA, Medeiros PJ, Craen R, Shoemaker JK. Neurogenic-nitric oxide interactions affecting brachial artery mechanics in humans: roles of vessel distensibility vs. diameter. Am J Physiol Regul Integr Comp Physiol. 2008 Oct;295(4):R1181–7. doi: 10.1152/ajpregu.90333.2008 18685062

16. Bjarnegard N, Ryden Ahlgren A, Sonesson B, Lanne T. The effect of sympathetic stimulation on proximal brachial artery mechanics in humans—differential behaviour within the length of the brachial artery? Acta Physiol Scand. 2004 Sep 1;182(1):21–7. doi: 10.1111/j.1365-201X.2004.01336.x 15329053

17. Lott MEJ, Hogeman C, Herr M, Bhagat M, Sinoway LI. Sex differences in limb vasoconstriction responses to increases in transmural pressures. Am J Physiol Heart Circ Physiol. 2009 Jan;296(1):H186–94. doi: 10.1152/ajpheart.00248.2008 19028800

18. Ooue A, Ichinose-Kuwahara T, Shamsuddin AKM, Inoue Y, Nishiyasu T, Koga S, et al. Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans. Eur J Appl Physiol. 2007 Aug 21;101(1):97–103. doi: 10.1007/s00421-007-0478-8 17520271

19. Geijer JR, Hultgren NE, Evanoff NG, Kelly AS, Chernin MA, Stoltman MG, et al. Comparison of brachial dilatory responses to hypercapnia and reactive hyperemia. Physiol Meas. 2016 Mar 1;37(3):380–6. doi: 10.1088/0967-3334/37/3/380 26862786

20. Geijer JR, Evanoff NG, Kelly AS, Chernin MA, Stoltman MG, Dengel DR. Reproducibility of Brachial Vascular Changes with Alterations in End-Tidal Carbon Dioxide. Ultrasound Med Biol. 2016 Jul 1;42(7):1450–6. doi: 10.1016/j.ultrasmedbio.2016.02.003 27061149

21. Lewis NCS, Bain AR, Wildfong KW, Green DJ, Ainslie PN. Acute hypoxaemia and vascular function in healthy humans. Exp Physiol. 2017 Dec 1;102(12):1635–46. doi: 10.1113/EP086532 28901662

22. Schondorf R, Wieling W. Vasoconstrictor reserve in neurally mediated syncope. Clin Auton Res. 2000 Apr;10(0959–9851):53–5.

23. Sundblad P, Kölegård R, Eiken O. G tolerance and the vasoconstrictor reserve. Eur J Appl Physiol. 2014 Dec 13;114(12):2521–8. doi: 10.1007/s00421-014-2957-z 25115505

24. Youssef M, Ghassemi A, Carvajal Gonczi CM, Kugathasan TA, Kilgour RD, Darlington PJ. Low Baseline Sympathetic Tone Correlates to a Greater Blood Pressure Change in the Cold Pressor Test. Aerosp Med Hum Perform. 2018 Jun 1;89(6):503–9. doi: 10.3357/AMHP.4943.2018 29789083

25. Pearson J, Lucas RAI, Schlader ZJ, Zhao J, Gagnon D, Crandall CG. Active and passive heat stress similarly compromise tolerance to a simulated hemorrhagic challenge. Am J Physiol Integr Comp Physiol. 2014 Oct 1;307(7):R822–7.

26. Schlader ZJ, Wilson TE, Crandall CG. Mechanisms of orthostatic intolerance during heat stress. Auton Neurosci. 2016 Apr;196:37–46. doi: 10.1016/j.autneu.2015.12.005 26723547

27. Krnjajic D, Allen DR, Butts CL, Keller DM. Carotid baroreflex control of heart rate is enhanced, while control of mean arterial pressure is preserved during whole body heat stress in young healthy men. Am J Physiol Integr Comp Physiol. 2016 Oct 1;311(4):R735–41.

28. Lewis NCS, Bailey DM, Dumanoir GR, Messinger L, Lucas SJE, Cotter JD, et al. Conduit artery structure and function in lowlanders and native highlanders: relationships with oxidative stress and role of sympathoexcitation. J Physiol. 2014 Mar 1;592(5):1009–24. doi: 10.1113/jphysiol.2013.268615 24324004


Článek vyšel v časopise

PLOS One


2019 Číslo 11