Risk of temperature, humidity and concentrations of air pollutants on the hospitalization of AECOPD


Autoři: Cai Chen aff001;  Xuejian Liu aff002;  Xianfeng Wang aff003;  Wei Li aff001;  Wenxiu Qu aff002;  Leilei Dong aff001;  Xiyuan Li aff001;  Zhiqing Rui aff004;  Xueqing Yang aff005
Působiště autorů: Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China aff001;  The First General Internal Medicine, Shengjing Hospital, China Medical University, Shenbei New District, Shenyang, Liaoning Province, China aff002;  Department of Ecology and Environment of the People’s Republic of Shandong, Jinan, China aff003;  Institute of Software, Chinese Academy of Sciences, Zhong Guan Cun, Beijing, P. R. China aff004;  Helmholz Centre for Environmental Research (UFZ), Department of Bioenergy, Leipzig, Germany aff005
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225307

Souhrn

Aim

To investigate the effect of temperature, humidity and the concentration of ambient air pollution on the hospitalization of AECOPD.

Method

Hospitalization record was obtained from Shenyang Medical Insurance Bureau, concluding patient’s age, gender, income hospital time, outcome hospital; Generalized additive model was used to analyze the relationship between temperature, humidity, the concentration of ambient air pollution and the hospitalization of AECOPD.

Result

The effect of ozone on admission rate in male group was higher than that in female group. Ambient air pollution had a weak influence on age≤50 group. It was found that the optimal lag day for daily relative 40 humidity to age≤50 group, 50<age≤60, 60<age≤70 group and age>70 group was on lag5, lag4, lag4 and lag5, respectively.

Conclusion

Air pollution, relative humidity and temperature can increase the risk of admission for acute exacerbation of COPD, and in this process there was a lag effect.

Klíčová slova:

Air pollution – Humidity – Chronic obstructive pulmonary disease – Inflammation – Ozone – Particulates – Respiratory physiology – Wind


Zdroje

1. Gruzieva O, Xu CJ, Yousefi P, Relton C, Merid SK, Breton CV, et al. Prenatal Particulate Air Pollution and DNA Methylation in Newborns: An Epigenome-Wide Meta-Analysis. Environ Health Perspect. 2019;127(5):57012. doi: 10.1289/EHP4522 31148503

2. Ho SC, Chuang KJ, Lee KY, Chen JK, Wu SM, Chen TT, et al. Chronic obstructive pulmonary disease patients have a higher risk of occurrence of pneumonia by air pollution. SCI TOTAL ENVIRON. 2019;677:524–9. doi: 10.1016/j.scitotenv.2019.04.358 31063895

3. Xie J, Teng J, Fan Y, Xie R, Shen A. The short-term effects of air pollutants on hospitalizations for respiratory disease in Hefei, China. INT J BIOMETEOROL. 2019;63(3):315–26. doi: 10.1007/s00484-018-01665-y 30680626

4. Sun X, Wei H, Young DE, Bein KJ, Smiley-Jewell SM, Zhang Q, et al. Differential pulmonary effects of wintertime California and China particulate matter in healthy young mice. TOXICOL LETT.2017;278:1–8. doi: 10.1016/j.toxlet.2017.07.853 28698096

5. Jin Y, Wu W, Zhang W, Zhao Y, Wu Y, Ge G, et al. Involvement of EGF receptor signaling and NLRP12 inflammasome in fine particulate matter-induced lung inflammation in mice. ENVIRON TOXICOL.2017;32(4):1121–34. doi: 10.1002/tox.22308 27377055

6. Wigenstam E, Elfsmark L, Bucht A, Jonasson S. Inhaled sulfur dioxide causes pulmonary and systemic inflammation leading to fibrotic respiratory disease in a rat model of chemical-induced lung injury. TOXICOLOGY. 2016;368:28–36. doi: 10.1016/j.tox.2016.08.018 27565714

7. Han M, Ji X, Li G, Sang N. NO2 inhalation enhances asthma susceptibility in a rat model. Environ Sci Pollut Res Int. 2017;24(36):27843–54. doi: 10.1007/s11356-017-0402-7 28986735

8. Rocks N, Vanwinge C, Radermecker C, Blacher S, Gilles C, Maree R, et al. Ozone-primed neutrophils promote early steps of tumour cell metastasis to lungs by enhancing their NET production. THORAX. 2019;74(8):768–79. doi: 10.1136/thoraxjnl-2018-211990 31142617

9. Barbone F, Catelan D, Pistelli R, Accetta G, Grechi D, Rusconi F, et al. A Panel Study on Lung Function and Bronchial Inflammation among Children Exposed to Ambient SO2 from an Oil Refinery. INT J ENV RES PUB HE. 2019;16(6):1057.

10. Jo EJ, Lee WS, Jo HY, Kim CH, Eom JS, Mok JH, et al. Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan, Korea. Respir Med.2017;124:79–87. doi: 10.1016/j.rmed.2017.02.010 28284326

11. Tasci SS, Kavalci C, Kayipmaz AE. Relationship of Meteorological and Air Pollution Parameters with Pneumonia in Elderly Patients. EMERG MED INT.;2018:4183203. doi: 10.1155/2018/4183203 29755789

12. Sun S, Laden F, Hart JE, Qiu H, Wang Y, Wong CM, et al. Seasonal temperature variability and emergency hospital admissions for respiratory diseases: a population-based cohort study. THORAX.2018;73(10):951–8. doi: 10.1136/thoraxjnl-2017-211333 29622691

13. Dehghan A, Khanjani N, Bahrampour A, Goudarzi G, Yunesian M. The relation between air pollution and respiratory deaths in Tehran, Iran- using generalized additive models. BMC PULM MED.2018;18(1):49. doi: 10.1186/s12890-018-0613-9 29558916

14. Chen C, Wang X, Lv C, Li W, Ma D, Zhang Q, et al. The effect of air pollution on hospitalization of individuals with respiratory and cardiovascular diseases in Jinan, China. MEDICINE. 2019;98(22):e15634. doi: 10.1097/MD.0000000000015634 31145279

15. Tian Y, Xiang X, Juan J, Song J, Cao Y, Huang C, et al. Short-term effects of ambient fine particulate matter pollution on hospital visits for chronic obstructive pulmonary disease in Beijing, China. Environ Health. 2018;17(1):21. doi: 10.1186/s12940-018-0369-y 29482552

16. Zhu B, Wang Y, Ming J, Chen W, Zhang L. Disease burden of COPD in China: a systematic review. Int J Chron Obstruct Pulmon Dis. 2018;13:1353–64. doi: 10.2147/COPD.S161555 29731623

17. Choi J, Oh JY, Lee YS, Min KH, Hur GY, Lee SY, et al. Harmful impact of air pollution on severe acute exacerbation of chronic obstructive pulmonary disease: particulate matter is hazardous. Int J Chron Obstruct Pulmon Dis. 2018;13:1053–9. doi: 10.2147/COPD.S156617 29681728

18. Waterston A, Castillo J, Olivas M, Hasson A, Dejean L. PM2.5 Exposure and ROS Production in NR8383 Rat Alveolar Macrophages. BIOPHYS J. 2018;1141(3):334A.

19. Vepkhvadze N, Kiladze N, Khorbaladze M, Kochoradze T, Kugoti I. IMPACT OF SULPHUR DIOXIDE ON THE RESPIRATORY SYSTEM OF TBILISI POPULATION. Georgian Med News. 2017(265):1114–9. 28574394

20. Phosri A, Ueda K, Phung V, Tawatsupa B, Honda A, Takano H. Effects of ambient air pollution on daily hospital admissions for respiratory and cardiovascular diseases in Bangkok, Thailand. SCI TOTAL ENVIRON. 2019;651(Pt 1):1144–53. doi: 10.1016/j.scitotenv.2018.09.183 30360246

21. Ma Y, Zhao Y, Zhou J, Jiang Y, Yang S, Yu Z. The relationship between diurnal temperature range and COPD hospital admissions in Changchun, China. ENVIRON SCI POLLUT R. 2018;25(18):17942–9.

22. Mu Z, Chen PL, Geng FH, Ren L, Gu WC, Ma JY, et al. Synergistic effects of temperature and humidity on the symptoms of COPD patients. INT J BIOMETEOROL. 2017;61(11):1919–25. doi: 10.1007/s00484-017-1379-0 28567499

23. Tseng CM, Chen YT, Ou SM, Hsiao YH, Li SY, Wang SJ, et al. The effect of cold temperature on increased exacerbation of chronic obstructive pulmonary disease: a nationwide study. PLOS ONE. 2013;8(3):e57066. doi: 10.1371/journal.pone.0057066 23554858

24. Almagro P, Hernandez C, Martinez-Cambor P, Tresserras R, Escarrabill J. Seasonality, ambient temperatures and hospitalizations for acute exacerbation of COPD: a population-based study in a metropolitan area. INT J CHRONIC OBSTR. 2015;10:899–908.


Článek vyšel v časopise

PLOS One


2019 Číslo 11