From waste to food: Optimising the breakdown of oil palm waste to provide substrate for insects farmed as animal feed


Autoři: Elizabeth Dickinson aff001;  Mark Harrison aff002;  Marc Parker aff002;  Michael Dickinson aff002;  James Donarski aff002;  Adrian Charlton aff002;  Rosie Nolan aff003;  Aida Rafat aff004;  Florence Gschwend aff004;  Jason Hallett aff004;  Maureen Wakefield aff002;  Julie Wilson aff001
Působiště autorů: Department of Mathematics, University of York, Heslington, York, United Kingdom aff001;  Fera Science Ltd., Sand Hutton, York, United Kingdom aff002;  Biorenewables Development Centre Ltd, Dunnington, York, United Kingdom aff003;  Department of Chemical Engineering, Imperial College London, London, United Kingdom aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224771

Souhrn

Waste biomass from the palm oil industry is currently burned as a means of disposal and solutions are required to reduce the environmental impact. Whilst some waste biomass can be recycled to provide green energy such as biogas, this investigation aimed to optimise experimental conditions for recycling palm waste into substrate for insects, farmed as a sustainable high-protein animal feed. NMR spectroscopy and LC-HRMS were used to analyse the composition of palm empty fruit bunches (EFB) under experimental conditions optimised to produce nutritious substrate rather than biogas. Statistical pattern recognition techniques were used to investigate differences in composition for various combinations of pre-processing and anaerobic digestion (AD) methods. Pre-processing methods included steaming, pressure cooking, composting, microwaving, and breaking down the EFB using ionic liquids. AD conditions which were modified in combination with pre-processing methods were ratios of EFB:digestate and pH. Results show that the selection of pre-processing method affects the breakdown of the palm waste and subsequently the substrate composition and biogas production. Although large-scale insect feeding trials will be required to determine nutritional content, we found that conditions can be optimised to recycle palm waste for the production of substrate for insect rearing. Pre-processing EFB using ionic liquid before AD at pH6 with a 2:1 digestate:EFB ratio were found to be the best combination of experimental conditions.

Klíčová slova:

Data acquisition – Insects – Larvae – Metabolites – NMR spectroscopy – Oil palm – Biogas – Lignin


Zdroje

1. Evans R, Alessi AM, Bird S, McQueen-Mason SJ, Bruce NC, Brockhurst MA. Defining the functional traits that drive bacterial decomposer community productivity. ISME J. 2017;11(7):1680–7. doi: 10.1038/ismej.2017.22 28323280

2. Abdullah N, Sulaiman F. The Oil Palm Wastes in Malaysia. In: Matovic MD, editor. Biomass Now—Sustainable Growth and Use: InTech; 2013.

3. Hamzah N, Tokimatsu K, Yoshikawa K. Solid Fuel from Oil Palm Biomass Residues and Municipal Solid Waste by Hydrothermal Treatment for Electrical Power Generation in Malaysia: A Review. Sustainability. 2019;11:1060.

4. Kamahara H, Hasanudin U, Widiyanto A, Tachibana R, Atsuta Y, Goto N, et al. Improvement potential for net energy balance of biodiesel derived from palm oil: A case study from Indonesian practice. Biomass and Bioenergy. 2010;34(12):1818–24. https://doi.org/10.1016/j.biombioe.2010.07.014.

5. Aziz M, Kurniawan T, Oda T, Kashiwagi T. Advanced power generation using biomass wastes from palm oil mills. Applied Thermal Engineering. 2017;114:1378–86. https://doi.org/10.1016/j.applthermaleng.2016.11.031.

6. Mohammed MAA, Salmiaton A, Wan Azlina WAKG, Mohamad Amran MS. Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresource Technology. 2012;110:628–36. doi: 10.1016/j.biortech.2012.01.056 22326334

7. DEFRA. Anaerobic Digestion Strategy and Action Plan. 2011.

8. www.proteinsect.eu. PROteINSECT Public Engagement Report 2015.

9. EU. COMMISSION REGULATION (EU) 2017/893 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as regards the provisions on processed animal protein. 2017.

10. Avraham T, Badani H, Galili S, Amir R. Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine γ-synthase gene. Plant Biotechnology Journal. 2005;3(1):71–9. doi: 10.1111/j.1467-7652.2004.00102.x 17168900

11. Mohammad N, Alam MZ, Kabbashi NA, Ahsan A. Effective composting of oil palm industrial waste by filamentous fungi: A review. Resources, Conservation and Recycling. 2012;58:69–78. https://doi.org/10.1016/j.resconrec.2011.10.009.

12. Purschke B, Scheibelberger R, Axmann S, Adler A, Jäger H. Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain. Food Additives & Contaminants: Part A. 2017;34(8):1410–20. doi: 10.1080/19440049.2017.1299946 28278126

13. Eriksson L, Antti H, Gottfries J, Holmes E, Johansson E, Lindgren F, et al. Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm). Analytical and Bioanalytical Chemistry. 2004;380(3):419–29. doi: 10.1007/s00216-004-2783-y 15448969

14. Li H, Qu Y, Yang Y, Chang S, Xu J. Microwave irradiation–A green and efficient way to pretreat biomass. Bioresource Technology. 2016;199:34–41. doi: 10.1016/j.biortech.2015.08.099 26342787

15. Bruni E, Jensen AP, Angelidaki I. Steam treatment of digested biofibers for increasing biogas production. Bioresource Technology. 2010;101(19):7668–71. doi: 10.1016/j.biortech.2010.04.064 20576571

16. O-Thong S, Boe K, Angelidaki I. Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Applied Energy. 2012;93:648–54. https://doi.org/10.1016/j.apenergy.2011.12.092.

17. Gschwend FJV, Malaret F, Shinde S, Brandt-Talbot A, Hallett JP. Rapid pretreatment of Miscanthus using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures. Green Chemistry. 2018;20(15):3486–98. doi: 10.1039/C8GC00837J

18. Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, et al. An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chemistry. 2017;19(13):3078–102. doi: 10.1039/c7gc00705a WOS:000404609200022.

19. Suksong W, Kongjan P, Prasertsan P, Imai T, O-Thong S. Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. Bioresource Technology. 2016;214:166–74. doi: 10.1016/j.biortech.2016.04.077 27132224

20. Kumaran P, Hephzibah D, Sivasankari R, Saifuddin N, Shamsuddin AH. A review on industrial scale anaerobic digestion systems deployment in Malaysia: Opportunities and challenges. Renewable and Sustainable Energy Reviews. 2016;56:929–40. https://doi.org/10.1016/j.rser.2015.11.069.

21. Siddiquee S, Shafawati SN, Naher L. Effective composting of empty fruit bunches using potential Trichoderma strains. Biotechnology Reports. 2017;13:1–7. doi: 10.1016/j.btre.2016.11.001 28352555

22. Salek RM, Steinbeck C, Viant MR, Goodacre R, Dunn WB. The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience. 2013;2(1):13–. doi: 10.1186/2047-217X-2-13 24131531.

23. Schleucher J, Schwendinger M Fau—Sattler M, Sattler M Fau—Schmidt P, Schmidt P Fau—Schedletzky O, Schedletzky O Fau—Glaser SJ, Glaser Sj Fau—Sorensen OW, et al. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. (0925–2738 (Print)).

24. Rusilowicz M, Dickinson M, Charlton A, O’Keefe S, Wilson J. A batch correction method for liquid chromatography–mass spectrometry data that does not depend on quality control samples. Metabolomics. 2016;12(3):56. doi: 10.1007/s11306-016-0972-2 27069441

25. Wehrens R, Hageman JA, van Eeuwijk F, Kooke R, Flood PJ, Wijnker E, et al. Improved batch correction in untargeted MS-based metabolomics. Metabolomics. 2016;12:88. doi: 10.1007/s11306-016-1015-8 PMC4796354. 27073351

26. Wehrens R, Mevik B-H. The pls Package: Principal Component and Partial Least Squares Regression in R. Journal of Statistical Software. 2007;18(2):1–23. doi: 10.18637/jss.v018.i02

27. Challenge Technology AER 208 Respirator. Available from: http://www.challenge-sys.com/files/AER-208_New_Brochure_2-12.pdf. 2016.

28. Schulte CF, Tolmie DE, Maziuk D, Nakatani E, Akutsu H, Yao H, et al. BioMagResBank. Nucleic Acids Research. 2007;36(suppl_1):D402–D8. doi: 10.1093/nar/gkm957 17984079

29. Yue F, Lu F, Ralph S, Ralph J. Identification of 4-O-5-Units in Softwood Lignins via Definitive Lignin Models and NMR. (1526–4602 (Electronic)).

30. Villar JC, Caperos A, García-Ochoa F. Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Science and Technology. 2001;35(3):245–55. doi: 10.1007/s002260100089

31. Kamimura N, Goto T, Takahashi K, Kasai D, Otsuka Y, Nakamura M, et al. A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde. Scientific Reports. 2017;7:44422. doi: 10.1038/srep44422 https://www.nature.com/articles/srep44422#supplementary-information. 28294121

32. Varanasi P, Singh P, Auer M, Adams PD, Simmons BA, Singh S. Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnology for Biofuels. 2013;6(1):14. doi: 10.1186/1754-6834-6-14 23356589

33. Brandt A, Gräsvik J, Hallett JP, Welton T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry. 2013;15(3):550–83. doi: 10.1039/C2GC36364J

34. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment. 1999;33(2):173–82. https://doi.org/10.1016/S1352-2310(98)00145-9.

35. Einarsson H, Snygg BG, Eriksson C. Inhibition of bacterial growth by Maillard reaction products. Journal of Agricultural and Food Chemistry. 1983;31(5):1043–7. doi: 10.1021/jf00119a031

36. Teh HF, Neoh BK, Hong MPL, Low JYS, Ng TLM, Ithnin N, et al. Differential Metabolite Profiles during Fruit Development in High-Yielding Oil Palm Mesocarp. PLOS ONE. 2013;8(4):e61344. doi: 10.1371/journal.pone.0061344 23593468

37. Yiin CL, Yusup S, Quitain AT, Uemura Y, Sasaki M, Kida T. Life cycle assessment of oil palm empty fruit bunch delignification using natural malic acid-based low-transition-temperature mixtures: a gate-to-gate case study. Clean Technologies and Environmental Policy. 2018;20(8):1917–28. doi: 10.1007/s10098-018-1590-7

38. Thuy Pham TP, Cho C-W, Yun Y-S. Environmental fate and toxicity of ionic liquids: A review. Water Research. 2010;44(2):352–72. doi: 10.1016/j.watres.2009.09.030 19854462

39. Zeng J, Helms GL, Gao X, Chen S. Quantification of Wheat Straw Lignin Structure by Comprehensive NMR Analysis. Journal of Agricultural and Food Chemistry. 2013;61(46):10848–57. doi: 10.1021/jf4030486 24143908

40. Yuan T-Q, Sun S-N, Xu F, Sun R-C. Characterization of Lignin Structures and Lignin–Carbohydrate Complex (LCC) Linkages by Quantitative 13C and 2D HSQC NMR Spectroscopy. Journal of Agricultural and Food Chemistry. 2011;59(19):10604–14. doi: 10.1021/jf2031549 21879769


Článek vyšel v časopise

PLOS One


2019 Číslo 11