Evaluation of Minimum Inhibitory Concentrations for 154 Mycoplasma synoviae isolates from Italy collected during 2012-2017


Autoři: Salvatore Catania aff001;  Marco Bottinelli aff001;  Alice Fincato aff001;  Michele Gastaldelli aff001;  Antonio Barberio aff001;  Federica Gobbo aff001;  Gaddo Vicenzoni aff001
Působiště autorů: Istituto Zooprofilattico Sperimentale delle Venezie, viale Dell’Università 10, Legnaro (PD), Italy aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224903

Souhrn

Mycoplasma synoviae (MS) is a highly prevalent bacterial species in poultry causing disease and severe economic losses. Antibiotic treatment is one of the control strategies that can be applied to contain clinical outbreaks in MS-free flocks, especially because this bacterium can be transmitted in ovo. It becomes, then, very important for veterinarians to know the antibiotic susceptibility of the circulating strains in order to choose the most appropriate first-line antibiotic molecule as a proactive role in fighting antibiotic resistance. We evaluated the Minimum Inhibitory Concentrations (MICs) of enrofloxacin, oxytetracycline, doxycycline, erythromycin, tylosin, tilmicosin, spiramycin, tiamulin, florfenicol and lincomycin for MS isolates collected between 2012 and 2017 in Italy. A total of 154 MS isolates from different poultry commercial categories (broiler, layer, and turkey sectors) was tested using commercial MIC plates. All MS isolates showed very high MIC values of erythromycin (MIC90 ≥8 μg/mL) and enrofloxacin (MIC90 ≥16 μg/mL). MIC values of doxycycline and oxytetracycline obtained were superimposable to each other with only a one-fold dilution difference. Discrepancies between MIC values of tylosin and tilmicosin were observed. Interestingly, seven isolates showed very high MIC values of lincomycin and tilmicosin, but not all of them showed very high MIC values of tylosin. Most of the MS isolates showed low MIC values of spiramycin, but seven strains showed a MIC ≥16 μg/mL. In the observation period, the frequency of the different MIC classes varied dependently on the tested antibiotic. Interestingly, tilmicosin MICs clearly showed a time-dependent progressive shift towards high-concentration classes, indicative of an on-going selection process among MS isolates. Until standardized breakpoints become available to facilitate data interpretation, it will be fundamental to continue studying MIC value fluctuations in the meantime in order to create a significant database that would facilitate veterinarians in selecting the proper drug for treating this impactful Mycoplasma.

Klíčová slova:

Antibiotic resistance – Antibiotics – Antimicrobials – Doxycycline – Mycoplasma – Poultry – Respiratory infections – Erythromycin


Zdroje

1. Swayne DE, Glisson J.R., Diseases of Poultry.– 13th ed. John Wiley & Sons, Inc.; 2013.

2. Landman WJM. Is Mycoplasma synoviae outrunning Mycoplasma gallisepticum? A viewpoint from the Netherlands. Avian Pathol. 2014;43(1): 2–8. doi: 10.1080/03079457.2014.881049 24397240

3. Ferguson-Noel N, Noormohammadi AH. Mycoplasma synoviae infection. In: Swayne DE, Glisson JR, McDougald LR, Nolan LK, Suarez DL, Nair V, editors. Diseases of Poultry. 13th ed. John Wiley & Sons, Inc. 2013. pp. 900–906.

4. Feberwee A, de Wit JJ, Landman WJ. Induction of eggshell apex abnormalities by Mycoplasma synoviae: field and experimental studies. Avian Pathol. 2009;38(2): 187.

5. Catania S, Bilato D, Gobbo F, Granato A, Terregino C, Iob L, et al. Treatment of eggshell abnormalities and reduced egg production caused by Mycoplasma synoviae infection. Avian Dis. 2010;54: 961–964. doi: 10.1637/9121-110309-Case.1 20608549

6. Ranck MF, Schmidt V, Philipp H-C, Voss M, Kacza J, Richter A, et al. Mycoplasma synoviae-associated egg-pole shell defects in laying hens. Berl Munch Tierarztl Wochenschr. 2010;123: 111–118. 20329643

7. Jeon EO, Kim JN, Lee HR, Koo BS, Min KC, Han MS, et al. Eggshell apex abnormalities associated with Mycoplasma synoviae infection in layers. J Vet Sci. 2014;15(4): 579–582. doi: 10.4142/jvs.2014.15.4.579 24962418

8. Brandão MDM, Santos FF, Machado LS, Verinaud MS, Oliveira JM, Soares NM, et al. The effect of eggshell apex abnormalities on table egg quality during storage in 2 seasons of the year. Poult Sci. 2014;93: 1775–1780.

9. Fiorentin L, Soncini RA, da Costa JLA, Mores MAZ, Trevisol IM, Toda M, et al. Apparent eradication of Mycoplasma synoviae in broiler breeders subjected to intensive antibiotic treatment directed to control Escherichia coli. Avian Pathol. 2003;32: 213–216. doi: 10.1080/0307945021000071641 12745374

10. Hong YH, Kwon JS, Lee HJ, Song CS, Lee SW. Eradication of Mycoplasma synoviae from a multi-age broiler breeder farm using antibiotics therapy. Poultry Sci. 2015;94: 2364–2368.

11. Kleven SH. Control of avian mycoplasma infections in commercial poultry. Avian Dis. 2008;52: 367–374. doi: 10.1637/8323-041808-Review.1 18939621

12. Marois C, Doufur-Gesbert F, Kempf I. Detection of Mycoplasma synoviae in poultry environment samples by culture and polymerase chain reaction. Vet Microbiol. 2000;73(4): 311–318. doi: 10.1016/s0378-1135(00)00178-4 10781729

13. Le Carrou J, Reinhardt AK, Kempf I, Gautier-Bouchardon AV. Persistence of Mycoplasma synoviae in hens after two enrofloxacin treatments and detection of mutations in the parC gene. Vet Res. 2006;37: 145–154. doi: 10.1051/vetres:2005046 16336931

14. Gautier-Bouchardon AV. Antimicrobial resistance in Mycoplasma spp.. Microbiol Spectr. 2018;6(4).

15. Lysnyansky I, Gerchman I, Mikula I, Gobbo F, Catania S, Levisohn S. Molecular characterization of acquired enrofloxacin resistance in Mycoplasma synoviae field isolates. Antimicrob Agents Chemoter. 2013;57(7): 3072–3077.

16. Lysnyansky I, Gerchman I, Flaminio B, Catania S. Decreased susceptibility to macrolide-lincosamide in Mycoplasma synoviae is associated with mutations in 23S ribosomal RNA. Microb Drug Resist. 2015;21(6): 581–589. doi: 10.1089/mdr.2014.0290 25734368

17. Bradbury JM, Yavari CA, Giles CJ. In vitro evaluation of various antimicrobials against Mycoplasma gallisepticum and Mycoplasma synoviae by the micro-broth method, and comparison with a commercially-prepared test system. Avian Pathol. 1994;23: 105–115. doi: 10.1080/03079459408418978 18671075

18. Hannan PCT, Windsor GD, de Jong A, Schmeer N, Stegemann H. Comparative susceptibilities of various animal-pathogenic mycoplasmas to fluoroquinolones. Antimicrob Agents Chemoter. 1997;41: 2037–2040.

19. Hannan PCT. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species. Vet Res. 2000;31: 373–395. doi: 10.1051/vetres:2000100 10958240

20. Wang C, Ewing M, A’arabi SY. In vitro susceptibility of avian mycoplasmas to enrofloxacin, sarafloxacin, tylosin, and oxytetracycline. Avian Dis. 2001;45: 456–460. 11417828

21. Cerdá RO, Giacoboni GI, Xavier JA, Sansalone PL, Landoni MF. In vitro antibiotic susceptibility of field isolates of Mycoplasma synoviae in Argentina. Avian Dis. 2002;46: 215–218. doi: 10.1637/0005-2086(2002)046[0215:IVASOF]2.0.CO;2 11922338

22. Dufour-Gesbert F, Dheilly A, Marois C, Kempf I. Epidemiological study on Mycoplasma synoviae infection in layers. Vet Microbiol. 2006;114: 148–154. doi: 10.1016/j.vetmic.2005.10.040 16338105

23. Landman WJM, Mevius DJ, Veldman KT, Feberwee A. In vitro antibiotic susceptibility of Dutch Mycoplasma synoviae field isolates originating from joint lesions and the respiratory tract of commercial poultry. Avian Pathol. 2008;37(4): 415–420. doi: 10.1080/03079450802216637 18622859

24. Gerchman I, Lysnyansky I, Perk S, Levisohn S. In vitro susceptibilities to fluoroquinolones in current and archived Mycoplasma gallisepticum and Mycoplasma synoviae isolates from meat-type turkeys. Vet Microbiol. 2008;131: 266–276. doi: 10.1016/j.vetmic.2008.04.006 18534788

25. Kreizinger Z, Grózner D, Sulyok KM, Nilsson K, Hrivnák V, Benčina D, et al. Antibiotic susceptibility profiles of Mycoplasma synoviae strains originating from Central and Eastern Europe. BMC Vet. Research 2017;13: 342.

26. Gautier-Bouchardon AV, Reinhardt AK, Kobisch M, Kempf I. In vitro development of resistance to enrofloxacin, erythromycin, tylosin tiamulin and oxytetracycline in Mycoplasma gallisepticum, Mycoplasma iowae and Mycoplasma synoviae. Vet Microbiol. 2002;88: 47–58. doi: 10.1016/s0378-1135(02)00087-1 12119137

27. Behbahan NGG, Asaki K, Afsharifar AR, Pourbakhsh SA. Susceptibilities of Mycoplasma gallisepticum and Mycoplasma synoviae isolates to antimicrobial agents in vitro. Int J Poul Sci. 2008;7(11): 1058–1064.

28. Zanella A, Martino PA, Pratelli A, Stonfer M. Development of antibiotic resistance in Mycoplasma gallisepticum in vitro. Avian Pathol. 1998;27: 591–596. doi: 10.1080/03079459808419389 18484048

29. McAuliffe L, Ellis RJ, Lawes JR, Ayling RD, Nicholas RA. 16S rDNA PCR and denaturing gradient gel electrophoresis; a single generic test for detecting and differentiating Mycoplasma species. J Med Microbiol. 2005;54(Pt 8): 731–739. doi: 10.1099/jmm.0.46058-0 16014426

30. Hammond PP, Ramírez AS, Morrow CJ, Bradbury JM. Development and evaluation of an improved diagnostic PCR for Mycoplasma synoviae using primers located in the haemagglutinin encoding gene vlhA and its value for strain typing. Vet Microbiol. 2009;136(1–2): 61–68. doi: 10.1016/j.vetmic.2008.10.011 19046834

31. Benčina D, Drobnič-Valič M, Horvat S, Narat M, Kleven SH, Dovč P. Molecular basis of the length variation in the N-terminal part of Mycoplasma synoviae haemagglutinin. FEMS Microbiol Lett. 2001;203(1): 115–123. doi: 10.1111/j.1574-6968.2001.tb10829.x 11557149

32. Bayatzadeh MA, Pourbakhsh SA, Ashtari A, Abtin AR, Abdoshah M. Molecular typing of Iranian field isolates Mycoplasma synoviae and their differentiation from the live commercial vaccine strain MS-H using vlhA gene. Brit Poult Sci. 2014;55(2): 148–156.

33. Catania S, Gobbo F, Ramirez AS, Guadagnini D, Baldasso E, Moronato ML, et al. Laboratory investigations into the origin of Mycoplasma synoviae isolated from a lesser flamingo (Phoeniconaias minor). BMC Vet Res. 2016;12: 52. doi: 10.1186/s12917-016-0680-1 26968657

34. Moronato ML, Cecchinato M, Facchetti G, Mainenti M, Gobbo F, Catania S. Application of different laboratory techniques to monitor the behavior of a Mycoplasma synoviae vaccine (MS-H) in broiler breeders. BMC Vet Res. 2018;14(1): 357. doi: 10.1186/s12917-018-1669-8 30458824

35. Clincal and Laboratory Standards Institute. Methods for Antimicrobial Susceptibility Testing for Human Mycoplasmas: approved guideline. CLSI document. 2011;M43-A Vol. 31 No. 19. Available from: https://clsi.org/standards/products/microbiology/documents/m43/

36. Markey B, Leonard F, Archambault M, Cullinane A, Maguire D. The Mycoplasmas (class: Mollicutes). In: Markey B, Leonard F, Archambault M, Cullinane A, Maguire D, editors. Clinical veterinary microbiology. 2nd ed. Mosby Elsevier; 2013. pp. 423–431.

37. Blodgett R. FDA’s Bacteriological Analytical Manual, Appendix 2: Most Probable Number from Serial Dilutions. 2010. Available from: https://www.fda.gov/food/laboratory-methods-food/bam-appendix-2-most-probable-number-serial-dilutions

38. Hothorn T, Hornik K, van de Wiel MA, Zeileis A. Implementing a class of permutation tests: The coin package. J Stat Softw. 2008;28(8): 1–23.

39. Klein U, de Jong A, Moyaert H, El Garch F, Leon R, Richard-Mazet A, et al. Antimicrobial susceptibility monitoring of Mycoplasma hyopneumoniae and Mycoplasma bovis isolated in Europe. Vet Microbiol. 2017;204: 188–193. doi: 10.1016/j.vetmic.2017.04.012 28532800

40. Barberio A, Flaminio B, De Vliegher S, Supré K, Kromker V, Garbarino C, et al. Short communication: In vitro antimicrobial susceptibility of Mycoplasma bovis isolates identified in milk from dairy cattle in Belgium, Germany and Italy. J Dairy Sci. 2016;99: 6578–6584. doi: 10.3168/jds.2015-10572 27209138

41. Hawkey PM. The origins and molecular basis of antibiotic resistance. BMJ 1998;317: 657–660. doi: 10.1136/bmj.317.7159.657 9727999

42. Kaiser GE. BIOL 230 Microbiology Lecture E-Text, The Community College of Baltimore County, Baltimore, Maryland, 2007. Available from: http://faculty.ccbcmd.edu/courses/bio141/lecguide/unit2/control/resist.html

43. Debets-Ossenkopp YJ, Brinkman AB, Kuipers EJ, Vandenbroucke-Grauls CM, Kusters JG. Explaining the bias in the 23S rRNA gene mutations associated with clarithromycin resistance in clinical isolates of Helicobacter pylori. Antimicrob Agents Ch. 1998;42(10): 2749–2751.

44. Wang G, Taylor DE. Site-specific mutations in the 23S rRNA gene of Helicobacter pylori confer two types of resistance to macrolide-lincosamide-streptogramin B antibiotics. Antimicrob Agents Chemoter. 1998;42(8): 1952–1958.

45. Islam KMS, Klein U, Burch DGS. The activity and compatibility of the antibiotic tiamulin with other drugs in poultry medicine-A review. Poultry Sci. 2009;88: 2353–2359.

46. Del Pozo-Sacristán R, Thiry J, Vranckx K, López-Rodríguez A, Chiers K., Haesebrouck F, Thomas E, Maes D. Efficacy of florfenicol injection in the treatment of Mycoplasma hyopneumoniae induced respiratory disease in pigs. Vet J. 2012;194(3): 420–422. doi: 10.1016/j.tvjl.2012.04.015 22609150

47. Gigueré S. Lincosamides, pleuromutilins and streptogramins. In: Gigueré S., Prescott J.F., Dowling P.M., editors. Antimicrobial Therapy in Veterinary Medicine. 5th ed. John Wiley & Sons Inc. Ames, IA. 2013. pp. 199–210.


Článek vyšel v časopise

PLOS One


2019 Číslo 11