In-situ time resolved spectrographic measurement using an additively manufactured metallic micro-fluidic analysis platform

Autoři: T. W. Monaghan aff001;  M. J. Harding aff002;  S. D. R. Christie aff003;  R. J. Friel aff004
Působiště autorů: Ministry of Defence Abbey Wood, Bristol, United Kingdom aff001;  School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland aff002;  Department of Chemistry, Loughborough University, Loughborough, United Kingdom aff003;  School of Information Technology, Halmstad University, Halmstad, Sweden aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224492



Microfluidic reactionware allows small volumes of reagents to be utilized for highly controlled flow chemistry applications. By integrating these microreactors with onboard analytical systems, the devices change from passive ones to active ones, increasing their functionality and usefulness. A pressing application for these active microreactors is the monitoring of reaction progress and intermediaries with respect to time, shedding light on important information about these real-time synthetic processes.


In this multi-disciplinary study the objective was to utilise advanced digital fabrication to research metallic, active microreactors with integrated fibre optics for reaction progress monitoring of solvent based liquids, incompatible with previously researched polymer devices, in combination with on-board Ultraviolet-visible spectroscopy for real-time reaction monitoring.


A solid-state, metal-based additive manufactured system (Ultrasonic Additive Manufacturing) combined with focussed ion beam milling, that permitted the accurate embedment of delicate sensory elements directly at the point of need within aluminium layers, was researched as a method to create active, metallic, flow reactors with on-board sensing. This outcome was then used to characterise and correctly identify concentrations of UV-active water-soluble B-vitamin nicotinamide and fluorescein. A dilution series was formed from 0.01–1.75 mM; which was pumped through the research device and monitored using UV-vis spectroscopy.


The results uniquely showed the in-situ ion milling of ultrasonically embedded optical fibres resulted in a metallic microfluidic reaction and monitoring device capable of measuring solvent solutions from 18 μM to 18 mM of nicotinamide and fluorescein, in real time. This level of accuracy highlights that the researched device and methods are capable of real-time spectrographic analysis of a range of chemical reactions outside of those possible with polymer devices.

Klíčová slova:

Fiber optics – Fluorescence – Light – Microfluidics – Optical equipment – Optical materials – Ultraviolet-visible spectroscopy – Fluidics


1. Dittrich PS, Manz A. Lab-on-a-chip: Microfluidics in drug discovery. Nature Reviews Drug Discovery. 2006. doi: 10.1038/nrd1985 16518374

2. Whitesides GM. The origins and the future of microfluidics. Nature. 2006. doi: 10.1038/nature05058 16871203

3. Monaghan T, Capel AJ, Christie SD, Harris RA, Friel RJ. Solid-state additive manufacturing for metallized optical fiber integration. Compos Part A Appl Sci Manuf. 2015;76. doi: 10.1016/j.compositesa.2015.05.032

4. Monaghan T, Harding MJ, Harris RA, Friel RJ, Christie SDR. Customisable 3D printed microfluidics for integrated analysis and optimisation. Lab a Chip—Miniaturisation Chem Biol. 2016;16: 3362–3373. doi: 10.1039/c6lc00562d 27452498

5. Tsuda S, Jaffery H, Doran D, Hezwani M, Robbins PJ, Yoshida M, et al. Customizable 3D Printed ‘Plug and Play’ Millifluidic Devices for Programmable Fluidics. Eddington DT, editor. PLoS One. 2015;10: 1–13. doi: 10.1371/journal.pone.0141640 26558389

6. Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJT, Bowman RW, et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem. 2012;4: 349–54. doi: 10.1038/nchem.1313 22522253

7. Dragone V, Rosnes MH, Sans V, Kitson PJ, Cronin L. Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices. Lab on a Chip. 2012. p. 3267. doi: 10.1039/c2lc40761b 22875258

8. Dragone V, Sans V, Rosnes MH, Kitson PJ, Cronin L. 3D-printed devices for continuous-flow organic chemistry. Beilstein J Org Chem. 2013;9: 951–9. doi: 10.3762/bjoc.9.109 23766811

9. Mathieson JS, Rosnes MH, Sans V, Kitson PJ, Cronin L. Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device. Beilstein J Nanotechnol. 2013;4: 285–291. doi: 10.3762/bjnano.4.31 23766951

10. Kitson PJ, Symes MD, Dragone V, Cronin L. Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chem Sci. 2013;4: 3099–3103. doi: 10.1039/C3SC51253C

11. Capel AJ, Edmondson S, Christie SDR, Goodridge RD, Bibb RJ, Thurstans M. Design and additive manufacture for flow chemistry. Lab Chip. 2013;13: 4583–90. doi: 10.1039/c3lc50844g 24100659

12. Bishop GW, Satterwhite JE, Bhakta S, Kadimisetty K, Gillette KM, Chen E, et al. 3D-Printed Fluidic Devices for Nanoparticle Preparation and Flow-Injection Amperometry Using Integrated Prussian Blue Nanoparticle-Modified Electrodes. Anal Chem. 2015;87: 5437–43. doi: 10.1021/acs.analchem.5b00903 25901660

13. Kadimisetty K, Mosa IM, Malla S, Satterwhite-Warden JE, Kuhns TM, Faria RC, et al. 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens Bioelectron. 2016;77: 188–193. doi: 10.1016/j.bios.2015.09.017 26406460

14. Gelber MK, Bhargava R. From chip-in-a-lab to lab-on-a-chip: towards a single handheld electronic system for multiple application-specific lab-on-a-chip (ASLOC). 2014;15. doi: 10.1039/c4lc01392a

15. Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem. 2014;86: 3124–30. doi: 10.1021/ac4041857 24512498

16. Comina G, Suska A, Filippini D, Foudeh A, Didar T, Veresa T, et al. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer. Lab Chip. 2014;14: 2978. doi: 10.1039/c4lc00394b 24931176

17. Au AK, Bhattacharjee N, Horowitz LF, Chang TC, Folch A. 3D-printed microfluidic automation. Lab Chip. 2015;15. doi: 10.1039/c4lc90120g

18. Bhargava KC, Thompson B, Malmstadt N. Discrete elements for 3D microfluidics. Proc Natl Acad Sci. 2014;111: 15013–15018. doi: 10.1073/pnas.1414764111 25246553

19. Lee KG, Park KJ, Seok S, Shin S, Kim DH, Park JY, et al. 3D printed modules for integrated microfluidic devices. RSC Adv. 2014;4: 32876. doi: 10.1039/C4RA05072J

20. Mcdonald JC, Chabinyc ML, Metallo SJ, Anderson JR, Stroock AD, Whitesides GM. Prototyping of Microfluidic Devices in Poly(dimethylsiloxane) Using Solid-Object Printing. doi: 10.1021/ac010938q 12033242

21. Bonyár A, Sántha H, Ring B, Varga M, Gábor Kovács J, Harsányi G. 3D Rapid Prototyping Technology (RPT) as a powerful tool in microfluidic development. Procedia Eng. 2010;5: 291–294. doi: 10.1016/j.proeng.2010.09.105

22. O’Connor J, Punch J, Jeffers N, Stafford J. A dimensional comparison between embedded 3D-printed and silicon microchannels. J Phys Conf Ser. 2014;525: 012009. doi: 10.1088/1742-6596/525/1/012009

23. Lee JM, Zhang M, Yeong WY. Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluid Nanofluidics. 2016;20: 5. doi: 10.1007/s10404-015-1688-8

24. Walczak R, Adamski K. Inkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chips. J Micromechanics Microengineering. 2015;25: 085013. doi: 10.1088/0960-1317/25/8/085013

25. Paydar OH, Paredes CN, Hwang Y, Paz J, Shah NB, Candler RN. Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings. Sensors Actuators A Phys. 2014;205: 199–203. doi: 10.1016/j.sna.2013.11.005

26. Sandron S, Heery B, Gupta V, Collins DA, Nesterenko EP, Nesterenko PN, et al. 3D printed metal columns for capillary liquid chromatography. Analyst. 2014;139: 6343–6347. doi: 10.1039/c4an01476f 25285334

27. Molho JI, Herr Amy E., Mosier Bruce P., Juan G. Santiago A, Kenny TW, And RAB, et al. Optimization of Turn Geometries for Microchip Electrophoresis. 2001. doi: 10.1021/AC001127+

28. Culbertson Christopher T., Jacobson Stephen C. and, Ramsey* JM. Dispersion Sources for Compact Geometries on Microchips. 1998. doi: 10.1021/AC9804487

29. Reston RR, Kolesar ES. Silicon-micromachined gas chromatography system used to separate and detect ammonia and nitrogen dioxide. I. Design, fabrication, and integration of the gas chromatography system. J Microelectromechanical Syst. 1994;3: 134–146. doi: 10.1109/84.338634

30. Fabry DC, Sugiono E, Rueping M. Online monitoring and analysis for autonomous continuous flow self-optimizing reactor systems. React Chem Eng. 2016;1: 129–133. doi: 10.1039/C5RE00038F

31. Löbbecke S. Integration of sensors and process analytical techniques. In: Kockmann N, editor. Micro Process Engineering Fundamentals, Devices, Fabrication, and Applications. Wiley-VCH Verlag GmbH; 2006. pp. 249–266.

32. Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M, Wolthers K, et al. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors (Basel). 2015;15: 30011–31. doi: 10.3390/s151229783 26633409

33. Dittrich Petra S., Tachikawa Kaoru and, Manz* A. Micro Total Analysis Systems. Latest Advancements and Trends. 2006. doi: 10.1021/AC0605602 16771530

34. Malic L, Kirk AG. Integrated miniaturized optical detection platform for fluorescence and absorption spectroscopy. Sensors Actuators A Phys. 2007;135: 515–524. doi: 10.1016/j.sna.2006.09.021

35. Kuswandi B, Nuriman, Huskens J, Verboom W. Optical sensing systems for microfluidic devices: A review. Anal Chim Acta. 2007;601: 141–155. doi: 10.1016/j.aca.2007.08.046 17920386

36. Dalitz F, Cudaj M, Maiwald M, Guthausen G. Process and reaction monitoring by low-field NMR spectroscopy. Prog Nucl Magn Reson Spectrosc. 2012;60: 52–70. doi: 10.1016/j.pnmrs.2011.11.003 22293399

37. White DR. Ultrasonic consolidation of aluminum tooling. Adv Mater Process. 2003;161: 64–65.

38. Okada M, Shin S, Miyagi M, Matsuda H. Joint Mechanism of Ultrasonic Welding. Trans Japan Inst Met. 1963;4: 250–255. doi: 10.2320/matertrans1960.4.250

39. Joshi KC. The formation of ultrasonic bonds between metals. Weld J. 1971;50: 840–848.

40. de Vries E. Mechanics and mechanisms of ultrasonic metal welding. Ohio State. 2004.

41. Daniels HPC. Ultrasonic Welding. Ultrasonics. 1965;3: 190–196.

42. Connor LP, O’Brien RL. Welding Handbook Vol 2: Welding processes. 8th ed. American Welding Society; 1991.

43. Jones JB, Powers JJ Jr. Ultrasonic Welding. Weld J. 1956;35: 761–766.

44. Kong CY, Soar RC. Fabrication of metal–matrix composites and adaptive composites using ultrasonic consolidation process. Mater Sci Eng A. 2005;412: 12–18. doi: 10.1016/j.msea.2005.08.041

45. Li D, Soar RC. Characterization of Process for Embedding SiC Fibers in Al 6061 O Matrix Through Ultrasonic Consolidation. J Eng Mater Technol. 2009;131: 021016. doi: 10.1115/1.3030946

46. Mou C, Saffari P, Li D, Zhou K, Zhang L, Soar R, et al. Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation. Meas Sci Technol. 2009;20: 034013. doi: 10.1088/0957-0233/20/3/034013

47. Kong CY, Soar RC, Dickens PM. Ultrasonic consolidation for embedding SMA fibres within aluminium matrices. Compos Struct. 2004;66: 421–427. doi: 10.1016/j.compstruct.2004.04.064

48. Li Y, Liu W, Feng Y, Zhang H. Ultrasonic embedding of nickel-coated fiber Bragg grating in aluminum and associated sensing characteristics. Opt Fiber Technol. 2012;18: 7–13. doi: 10.1016/j.yofte.2011.09.004

49. Robinson CJ, Stucker B, Lopes AJ, Wicker RB, Palmer JA. Integration of direct-write (DW) and ultrasonic consolidation (UC) technologies to create advanced structures with embedded electrical circuitry. Proceedings of the 17th Annual Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin, TX. Society of Manufacturing Engineers; 2006. pp. 60–69.

50. Hopkins CD, Foster D, Dapino MJ, Zhang L, Aerospace D. Metal-matrix composite metamaterials with smart switches embedded by ultrasonic consolidation. ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010. 2010. pp. 471–480.

51. Li J, Monaghan T, Masurtschak S, Bournias-Varotsis A, Friel RJ, Harris RA. Exploring the mechanical strength of additively manufactured metal structures with embedded electrical materials. Mater Sci Eng A. 2015;639. doi: 10.1016/j.msea.2015.05.019

52. Li J, Monaghan T, Nguyen TT, Kay RW, Friel RJ, Harris RA. Multifunctional metal matrix composites with embedded printed electrical materials fabricated by Ultrasonic Additive Manufacturing. Compos Part B Eng. 2017;113.

53. Surdo S, Merlo S, Carpignano F, Strambini LM, Trono C, Giannetti A, et al. Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis. Lab Chip. 2012;12: 4403. doi: 10.1039/c2lc40613f 22930245

54. Davis JR. Corrosion of aluminum and aluminum alloys. ASM International; 1999.

55. Kong C. Y, Soar R. C, Dickens P. M. Optimum process parameters for ultrasonic consolidation of 3003 aluminium. J Mater Process Technol. 2004;146: 181–187. doi: 10.1016/j.jmatprotec.2003.10.016

56. Li D, Soar RC. Plastic flow and work hardening of Al alloy matrices during ultrasonic consolidation fibre embedding process. Mater Sci Eng A. 2008;498: 421–429. doi: 10.1016/j.msea.2008.08.037

57. Swinehart DF. The Beer-Lambert Law. J Chem Educ. 1962;39: 333–335. doi: 10.1021/ed039p333

58. Miller J, Miller J. Statistics and chemometrics for analytical chemistry. 2005.

Článek vyšel v časopise


2019 Číslo 11