iTRAQ-based high-throughput proteomics analysis reveals alterations of plasma proteins in patients infected with human bocavirus


Autoři: Junmei Bian aff001;  Min Liang aff001;  Shuxian Ding aff001;  Liyan Wang aff001;  Wenchang Ni aff001;  Shisi Xiong aff001;  Wan Li aff001;  Xingxing Bao aff001;  Xue Gao aff001;  Rong Wang aff001
Působiště autorů: Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, PR China aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225261

Souhrn

Human bocavirus (HBoV) is a member of the genus Bocavirus, family Parvoviridae, and subfamily Parvovirus and was first identified in nasopharyngeal aspirates of Swedish children with acute respiratory tract infection (ARTI) in 2005. It is the causative agent of nasopharyngeal aspirate disease and death in children. The HboV genomic structure is a linear single-stranded DNA (ssDNA). Its clinical pathogenic characteristics have been extensively studied, however, at present the molecular mechanism underlying the pathogenesis of HBoV infection is not completely clear. In this study, a total of 293 differentially expressed proteins (DEPs) between ARTI cases and healthy plasma samples were characterized using isobaric tags for relative and absolute quantitation (iTRAQ)-coupled bioinformatics analysis, among which 148 were up-regulated and 135 were down-regulated. Gene Ontology (GO) and Cluster of Orthologous Groups of proteins (COG) annotated an enrichment of DEPs in complement activation and biological processes like immunity, inflammation, signal transduction, substance synthesis, and metabolism. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis enriched DEPs mainly in the Wnt signaling pathway (ko04310), PPAR signaling pathway (ko03320), intestinal immune network for IgA production (ko04672), complement and coagulation cascades (ko04610), Toll-like receptor signaling pathway (ko04620) and B cell receptor signaling pathway (ko04662). Further, expression levels of three candidate proteins (upregulated PPP2R1A and CUL1, and downregulated CETP) were validated using western blotting. Our investigation is the first analysis of the proteomic profile of HBoV-infected ARTI cases using the iTRAQ approach, providing a foundation for a better molecular understanding of the pathogenesis of ARTI in children.

Klíčová slova:

Diagnostic medicine – Endoplasmic reticulum – Metabolic pathways – Pathogenesis – Proteomics – Pyruvate – TGF-beta signaling cascade – Wnt signaling cascade


Zdroje

1. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA. 2005;102(36):12891–12896. doi: 10.1073/pnas.0504666102 16118271

2. Allander T, Jartti T, Gupta S, Niesters HG, Lehtinen P, Osterback R, et al. Human bocavirus and acute wheezing in children. Clin Infect Dis 2007; 44: 904–910. doi: 10.1086/512196 17342639

3. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379(9832):2151–61. doi: 10.1016/S0140-6736(12)60560-1 22579125

4. Mortality GBD, Causes of Death C. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388 (10053):1459–1544. doi: 10.1016/S0140-6736(16)31012-1 27733281

5. Luksic I, Kearns PK, Scott F, Rudan I, Campbell H, Nair H. Viral etiology of hospitalized acute lower respiratory infections in children under 5 years of age—a systematic review and meta-analysis. Croat Med J. 2013;54(2):122–134. doi: 10.3325/cmj.2013.54.122 23630140

6. Kapoor A, Slikas E, Simmonds P, Chieochansin T, Naeem A, Shaukat S, et al. A newly identified bocavirus species in human stool. J Infect Dis 2009; 199: 196–200. doi: 10.1086/595831 19072716

7. Arthur JL, Higgins GD, Davidson GP, Givney RC, Ratcliff RM. A novel bocavirus associated with acute gastroenteritis in Australian children. PLoS Pathog 2009; 5: e1000391. doi: 10.1371/journal.ppat.1000391 19381259

8. Kapoor A, Simmonds P, Slikas E, Li L, Bodhidatta L, Sethabutr O, et al. Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. J Infect Dis 2010; 201: 1633–1643. doi: 10.1086/652416 20415538

9. Jartti T, Hedman K, Jartti L, Ruuskanen O, Allander T, Söderlund- Venermo M. Human bocavirus-the first 5 years. Rev Med Virol 2012; 22: 46–64. doi: 10.1002/rmv.720 22038931

10. Chen KC, Shull BC, Moses EA, Lederman M, Stout ER, Bates RC. Complete nucleotide sequence and genome organization of bovine parvovirus. J Virol 1986; 60: 1085–1097. 3783814

11. Guido M, Tumolo MR, Verri T, Romano A, Serio F, De Giorgi M, et al. Human bocavirus: Current knowledge and future challenges. World J Gastroenterol 2016; 22(39): 8684–8697. doi: 10.3748/wjg.v22.i39.8684 27818586

12. Kesebir D, Vazquez M, Weibel C, Shapiro ED, Ferguson D, Landry ML, et al. Human bocavirus infection in young children in the United States: molecular epidemiological profile and clinical characteristics of a newly emerging respiratory virus. J Infect Dis 2006; 194: 1276–1282. doi: 10.1086/508213 17041854

13. Allander T. Human bocavirus. J Clin Virol 2008; 41:29–33. doi: 10.1016/j.jcv.2007.10.026 18055252

14. Han TH, Kim CH, Park SH, Kim EJ, Chung JY, Hwang ES. Detection of human bocavirus-2 in children with acute gastroenteritis in South Korea. Arch Virol 2009; 154:1923–7. doi: 10.1007/s00705-009-0533-3 19862470

15. Qiu J, Guo L, Wang Y, Zhou H, Wu C, Song J, et al. Differential seroprevalence of human bocavirus species 1–4 in Beijing, China. PloS ONE 2012;7:e39644. doi: 10.1371/journal.pone.0039644 22761854

16. Guido M, Tumolo MR, Verri T, Romano A, Serio F, De Giorgi M, et al. Human bocavirus: Current knowledge and future challenges. World J Gastroenterol 2016; 21; 22(39): 8684–8697. doi: 10.3748/wjg.v22.i39.8684 27818586

17. Lekana-Douki SE, Behillil S, Enouf V, Leroy EM, Berthet N. Detection of human bocavirus‑1 in both nasal and stool specimens from children under 5 years old with influenza‑like illnesses or diarrhea in Gabon. BMC Res Notes 2018; 11:495–501. doi: 10.1186/s13104-018-3605-1 30029615

18. Usami M, Mitsunaga K. Proteomic analysis and in vitro developmental toxicity tests for mechanism-based safety evaluation of chemicals. Expert Rev Proteomics 2011; 8:153–155. doi: 10.1586/epr.11.16 21501008

19. Chen JH, Chang YW, Yao CW, Chiueh TS, Huang SC, Chien KY, et al. Plasma proteome of severe acute respiratory syndrome analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proc Natl Acad Sci USA 2004; 101: 17039–17044. doi: 10.1073/pnas.0407992101 15572443

20. Choi S, Lim JY, Kim Y, Song MJ, Jung WW, Seo JB, et al. Plasma proteomic analysis of patients infected with H1N1 influenza virus. Proteomics 2014; 14: 1933–1942. doi: 10.1002/pmic.201400030 24888898

21. Dong CF, Xiong XP, Shuang F, Weng SP, Zhang J, Zhang Y, et al. Global landscape of structural proteins of infectious spleen and kidney necrosis virus. J Virol 2011; 85: 2869–2877. doi: 10.1128/JVI.01444-10 21209107

22. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004; 3:1154–1169. doi: 10.1074/mcp.M400129-MCP200 15385600

23. Herbrich SM, Cole RN, West KP Jr, Schulze K, Yager JD, Groopman JD et al. Statistical inference from multiple iTRAQ experiments without using common reference standards. J Proteome Res 2013, 12: 594–604. doi: 10.1021/pr300624g 23270375

24. Yang S, Pei Y, Zhao A. iTRAQ-based Proteomic Analysis of Porcine Kidney Epithelial PK15 cells Infected with Pseudorabies virus. Scientific Reports 2017; 7:45922. doi: 10.1038/srep45922 28374783

25. Guo X, Hu H, Chen F, Li Z, Ye S, Cheng S, et al. iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus. Journal of Proteomics 2016; 130, 65–75. doi: 10.1016/j.jprot.2015.09.002 26361011

26. de Chassey B, Meyniel-Schicklin L, Aublin-Gex A, Andre P, Lotteau V. New horizons for antiviral drug discovery from virus host protein interaction networks. Curr Opin Virol 2012; 2, 606–613. doi: 10.1016/j.coviro.2012.09.001 23025912

27. Zeng S, Zhang H, Ding Z, Luo R, An K, Liu L, et al. Proteome analysis of porcine epidemic diarrhea virus (PEDV)-infected Vero cells. Proteomics 2015; 15, 1819–1828. doi: 10.1002/pmic.201400458 25604190

28. Du J, Xing S, Tian Z, Gao S, Xie J, Chang H, et al. Proteomic analysis of sheep primary testicular cells infected with bluetongue virus. Proteomics 2016;16, 1499–1514. doi: 10.1002/pmic.201500275 26989863

29. Wysocki M, Chen H, Steibel JP, Kuhar D, Petry D Bates J, Johnson R, et al. Identifying putative candidate genes and pathways involved in immune responses to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Animal Genetics 2011; 43: 328–332. doi: 10.1111/j.1365-2052.2011.02251.x 22486506

30. Cheng Q, Yin G. Cullin-1 regulates MG63 cell proliferation and metastasis and is a novel prognostic marker of osteosarcoma. Int J Biol Markers 2017; 4;32(2):e202–e209. doi: 10.5301/jbm.5000247 28315506

31. Ping JG, Wang F, Pu JX, Hou PF, Chen YS, Bai J, et al. The expression of Cullin1 is increased in renal cell carcinoma and promotes cancer cell proliferation, migration, and invasion. Tumour Biol 2016; 37(9):12823–12831. doi: 10.1007/s13277-016-5151-6 27449035

32. More S, Yang X, Zhu Z, Bamunuarachchi G, Guo Y, Huang C, et al. Regulation of influenza virus replication by Wnt/β-catenin signaling. PLoS One 2018; 13(1):e0191010. doi: 10.1371/journal.pone.0191010 29324866

33. Kindrachuk J, Wahl-Jensen V, Safronetz D, Trost B, Hoenen T, Arsenault R, et al. Ebola Virus Modulates Transforming Growth Factor β Signaling and Cellular Markers of Mesenchyme-Like Transition in Hepatocytes. J Virology

34. Gough NR. Enhancing and Inhibiting TGF-β Signaling in Infection. Sci. Signal 2015; 8(359), pp. ec9

35. Li N, Ren A, Wang X, Fan X, Zhao Y, Gao GF, et al. Influenza viral neuraminidase primes bacterial coinfection through TGF-β–mediated expression of host cell receptors. Proc. Natl. Acad. Sci. USA 2015; 112, 238–243. doi: 10.1073/pnas.1414422112 25535343

36. Chondrogianni N, Gonos ES. Proteasome function determines cellular homeostasis and the rate of aging. Adv Exp Med Biol 2010; 694:38–46. doi: 10.1007/978-1-4419-7002-2_4 20886755

37. Jung T, Catalgol B, Grune T. The proteasomal system. Molecular Aspects of Medicine. 2009; 30:191–296. doi: 10.1016/j.mam.2009.04.001 19371762

38. Blanchette P, Branton PE. Manipulation of the ubiquitin-proteasome pathway by small DNA tumor viruses. Virology. 2009; 384:317–323. doi: 10.1016/j.virol.2008.10.005 19013629

39. Finley D. Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome. Annual Review of Biochemistry 2009; 78:477–513. doi: 10.1146/annurev.biochem.78.081507.101607 19489727

40. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34:637–650. doi: 10.1016/j.immuni.2011.05.006 21616434

41. Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. International Immunology 2009; 21(4): 317–337. doi: 10.1093/intimm/dxp017 19246554

42. Fanale D, Amodeo V, Caruso S. The Interplay between Metabolism, PPAR Signaling Pathway, and Cancer. PPAR Research 2017; Article ID 1830626.

43. Goodwin CM, Xu S, Munger J. Stealing the Keys to the Kitchen: Viral Manipulation of the Host Cell Metabolic Network. Trends Microbiol 2015; 23, 789–798. doi: 10.1016/j.tim.2015.08.007 26439298

44. Ma Y, Hendershot LM. ER chaperone functions during normal and stress conditions. J Chem Neuroanat 2004; 28, 51–65. doi: 10.1016/j.jchemneu.2003.08.007 15363491

45. Montalbano R, Honrath B, Wissniowski TT, Elxnat M, Roth S, Ocker M, et al. Exogenous hepatitis B virus envelope proteins induce endoplasmic reticulum stress: involvement of cannabinoid axis in liver cancer cells. Oncotarget 2016; 7, 20312–20323. doi: 10.18632/oncotarget.7950 26967385

46. Cervantes-Ortiz SL, Zamorano Cuervo N, Grandvaux N. Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology. Viruses 2016; 8.

47. Low JS, Fassati A. Hsp90: a chaperone for HIV-1. Parasitology 2014; 141, 1192–1202. doi: 10.1017/S0031182014000298 25004926

48. Smith DR, McCarthy S, Chrovian A, Olinger G, Stossel A, Geisbert TW, et al. Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antiviral Res 2010; 87, 187–194. doi: 10.1016/j.antiviral.2010.04.015 20452380

49. Dutta D, Bagchi P, Chatterjee A, Nayak MK, Mukherjee A, Chattopadhyay S, et al. The molecular chaperone heat shock protein-90 positively regulates rotavirus infectionx. Virology 2009; 391, 325–333. doi: 10.1016/j.virol.2009.06.044 19628238

50. Vashist S, Urena L, Gonzalez-Hernandez MB, Choi J, de Rougemont A, et al. Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J Virol 2015; 89, 6352–6363. doi: 10.1128/JVI.00315-15 25855731

51. Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem J 1999; 2, 281–292.

52. Yue X, Wang H, Zhao F, Liu S, Wu J, Ren W, et al. Hepatitis B virus-induced calreticulin protein is involved in IFN resistance. J Immunol 2012; 189, 279–286. doi: 10.4049/jimmunol.1103405 22661095

53. Fukushi M, Yoshinaka Y., Matsuoka Y., Hatakeyama, et al. Monitoring of S protein maturation in the endoplasmic reticulum by calnexin is important for the infectivity of severe acute respiratory syndrome coronavirus. J Virol 2012; 86, 11745–11753. doi: 10.1128/JVI.01250-12 22915798


Článek vyšel v časopise

PLOS One


2019 Číslo 11