Clinical utility of combined preimplantation genetic testing methods in couples at risk of passing on beta thalassemia/hemoglobin E disease: A retrospective review from a single center


Autoři: Chonthicha Satirapod aff001;  Matchuporn Sukprasert aff001;  Bhakbhoom Panthan aff002;  Angkana Charoenyingwattana aff002;  Pawares Chitayanan aff003;  Wasun Chantratita aff002;  Wicharn Choktanasiri aff001;  Objoon Trachoo aff002;  Suradej Hongeng aff005
Působiště autorů: Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand aff001;  Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand aff002;  Panthupark Genetics Clinic, Bangkok, Thailand aff003;  Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand aff004;  Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand aff005
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225457

Souhrn

Thalassemia and hemoglobinopathy is a group of hereditary blood disorder with diverse clinical manifestation inherited by autosomal recessive manner. The Beta thalassemia/Hemoglobin E disease (HbE/βthal) causes a variable degree of hemolysis and the most severe form of HbE/βthal disease develop a lifelong transfusion-dependent anemia. Preimplantation genetic testing (PGT) is an established procedure of embryo genetic analysis to avoid the risk of passing on this particular condition from the carrier parents to their offspring. Preimplantation genetic testing for chromosomal aneuploidy (PGT-A) also facilitates the selection of embryos without chromosomal aberration resulting in the successful embryo implantation rate. Herein, we study the clinical outcome of using combined PGT-M and PGT-A in couples at risk of passing on HbE/βthal disease. The study was performed from January 2016 to December 2017. PGT-M was developed using short tandem repeat linkage analysis around the beta globin gene cluster and direct mutation testing using primer extension-based mini-sequencing. Thereafter, we recruited 15 couples at risk of passing on HbE/βthal disease who underwent a combined total of 22 IVF cycles. PGT was performed in 106 embryos with a 3.89% allele drop-out rate. Using combined PGT-M and PGT-A methods, 80% of women obtained satisfactory genetic testing results and were able to undergo embryo transfer within the first two cycles. The successful implantation rate was 64.29%. PGT accuracy was evaluated by prenatal and postnatal genetic confirmation and 100% had a genetic status consistent with PGT results. The overall clinical outcome of successful live birth for couples at risk of producing offspring with HbE/βthal was 53.33%. Conclusively, combined PGT-M and PGT-A is a useful technology to prevent HbE/βthal disease in the offspring of recessive carriers.

Klíčová slova:

Embryos – Genetic testing – Linkage analysis – Medical implants – Next-generation sequencing – Pregnancy – Thalassemia – Beta-thalassemia


Zdroje

1. Panich V, Pornpatkul M, Sriroongrueng W. The problem of thalassemia in Thailand. Southeast Asian J Trop Med Public Health. 1992;23 Suppl 2:1–6. 1298980.

2. Origa R. Beta-Thalassemia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA)1993.

3. Weatherall DJ, Williams TN, Allen SJ, O'Donnell A. The population genetics and dynamics of the thalassemias. Hematol Oncol Clin North Am. 2010;24(6):1021–31. doi: 10.1016/j.hoc.2010.08.010 21075278.

4. Weatherall DJ. The Evolving Spectrum of the Epidemiology of Thalassemia. Hematol Oncol Clin North Am. 2018;32(2):165–75. doi: 10.1016/j.hoc.2017.11.008 29458724.

5. Thein SL. The molecular basis of beta-thalassemia. Cold Spring Harb Perspect Med. 2013;3(5):a011700. doi: 10.1101/cshperspect.a011700 23637309.

6. Orkin SH, Kazazian HH Jr., Antonarakis SE, Ostrer H, Goff SC, Sexton JP. Abnormal RNA processing due to the exon mutation of beta E-globin gene. Nature. 1982;300(5894):768–9. doi: 10.1038/300768a0 7177196.

7. Traeger J, Wood WG, Clegg JB, Weatherall DJ. Defective synthesis of HbE is due to reduced levels of beta E mRNA. Nature. 1980;288(5790):497–9. doi: 10.1038/288497a0 7442796.

8. Fucharoen S, Winichagoon P, Pootrakul P, Piankijagum A, Wasi P. Variable severity of Southeast Asian beta 0-thalassemia/Hb E disease. Birth Defects Orig Artic Ser. 1987;23(5A):241–8. 3689905.

9. Fucharoen S, Ketvichit P, Pootrakul P, Siritanaratkul N, Piankijagum A, Wasi P. Clinical manifestation of beta-thalassemia/hemoglobin E disease. J Pediatr Hematol Oncol. 2000;22(6):552–7. doi: 10.1097/00043426-200011000-00022 11132229.

10. Fucharoen S, Winichagoon P. Clinical and hematologic aspects of hemoglobin E beta-thalassemia. Curr Opin Hematol. 2000;7(2):106–12. doi: 10.1097/00062752-200003000-00006 10698297.

11. Lucarelli G, Isgro A, Sodani P, Gaziev J. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med. 2012;2(5):a011825. doi: 10.1101/cshperspect.a011825 22553502.

12. Elborai Y, Uwumugambi A, Lehmann L. Hematopoietic stem cell transplantation for thalassemia. Immunotherapy. 2012;4(9):947–56. doi: 10.2217/imt.12.95 23046238.

13. Cao A, Galanello R, Rosatelli MC. Prenatal diagnosis and screening of the haemoglobinopathies. Baillieres Clin Haematol. 1998;11(1):215–38. doi: 10.1016/s0950-3536(98)80076-0 10872479.

14. Ioannides AS. Preconception and prenatal genetic counselling. Best Pract Res Clin Obstet Gynaecol. 2017;42:2–10. doi: 10.1016/j.bpobgyn.2017.04.003 28533154.

15. Traeger-Synodinos J, Harteveld CL. Preconception carrier screening and prenatal diagnosis in thalassemia and hemoglobinopathies: challenges and future perspectives. Expert Rev Mol Diagn. 2017;17(3):281–91. doi: 10.1080/14737159.2017.1285701 28110577.

16. Limwongse C. Medical genetic services in a developing country: lesson from Thailand. Curr Opin Pediatr. 2017;29(6):634–9. doi: 10.1097/MOP.0000000000000544 28922317.

17. Kuliev A, Rechitsky S, Verlinsky O, Ivakhnenko V, Cieslak J, Evsikov S, et al. Birth of healthy children after preimplantation diagnosis of thalassemias. J Assist Reprod Genet. 1999;16(4):207–11. Epub 1999/05/04. doi: 10.1023/A:1020316924064 10224564.

18. De Rycke M, Van de Velde H, Sermon K, Lissens W, De Vos A, Vandervorst M, et al. Preimplantation genetic diagnosis for sickle-cell anemia and for beta-thalassemia. Prenat Diagn. 2001;21(3):214–22. Epub 2001/03/22. doi: 10.1002/1097-0223(200103)21:3<214::aid-pd51>3.0.co;2-4 11260611.

19. Chamayou S, Alecci C, Ragolia C, Giambona A, Siciliano S, Maggio A, et al. Successful application of preimplantation genetic diagnosis for beta-thalassaemia and sickle cell anaemia in Italy. Hum Reprod. 2002;17(5):1158–65. Epub 2002/05/01. doi: 10.1093/humrep/17.5.1158 11980733.

20. Jiao Z, Zhou C, Li J, Shu Y, Liang X, Zhang M, et al. Birth of healthy children after preimplantation diagnosis of beta-thalassemia by whole-genome amplification. Prenat Diagn. 2003;23(8):646–51. Epub 2003/08/13. doi: 10.1002/pd.659 12913871.

21. Kokkali G, Traeger-Synodinos J, Vrettou C, Stavrou D, Jones GM, Cram DS, et al. Blastocyst biopsy versus cleavage stage biopsy and blastocyst transfer for preimplantation genetic diagnosis of beta-thalassaemia: a pilot study. Hum Reprod. 2007;22(5):1443–9. Epub 2007/01/31. doi: 10.1093/humrep/del506 17261575.

22. Palmer GA, Traeger-Synodinos J, Davies S, Tzetis M, Vrettou C, Mastrominas M, et al. Pregnancies following blastocyst stage transfer in PGD cycles at risk for beta-thalassaemic haemoglobinopathies. Hum Reprod. 2002;17(1):25–31. Epub 2002/01/05. doi: 10.1093/humrep/17.1.25 11756357.

23. Kuliev A, Rechitsky S, Verlinsky O, Ivakhnenko V, Evsikov S, Wolf G, et al. Preimplantation diagnosis of thalassemias. J Assist Reprod Genet. 1998;15(5):219–25. Epub 1998/05/30. doi: 10.1023/A:1022571822585 9604751.

24. Thornhill AR, deDie-Smulders CE, Geraedts JP, Harper JC, Harton GL, Lavery SA, et al. ESHRE PGD Consortium 'Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)'. Hum Reprod. 2005;20(1):35–48. Epub 2004/11/13. doi: 10.1093/humrep/deh579 15539444.

25. Girardet A, Viart V, Plaza S, Daina G, De Rycke M, Des Georges M, et al. The improvement of the best practice guidelines for preimplantation genetic diagnosis of cystic fibrosis: toward an international consensus. Eur J Hum Genet. 2016;24(4):469–78. doi: 10.1038/ejhg.2015.99 26014425.

26. Trachoo O, Satirapod C, Panthan B, Sukprasert M, Charoenyingwattana A, Chantratita W, et al. First successful trial of preimplantation genetic diagnosis for pantothenate kinase-associated neurodegeneration. J Assist Reprod Genet. 2017;34(1):109–16. doi: 10.1007/s10815-016-0833-y 27815806.

27. Griffin DK, Ogur C. Chromosomal analysis in IVF: just how useful is it? Reproduction. 2018;156(1):F29–F50. doi: 10.1530/REP-17-0683 29945889.

28. Tongsong T, Charoenkwan P, Sirivatanapa P, Wanapirak C, Piyamongkol W, Sirichotiyakul S, et al. Effectiveness of the model for prenatal control of severe thalassemia. Prenat Diagn. 2013;33(5):477–83. doi: 10.1002/pd.4095 23553531.

29. Yamsri S, Sanchaisuriya K, Fucharoen G, Sae-Ung N, Ratanasiri T, Fucharoen S. Prevention of severe thalassemia in northeast Thailand: 16 years of experience at a single university center. Prenat Diagn. 2010;30(6):540–6. doi: 10.1002/pd.2514 20509153.

30. Corveleyn A, Morris MA, Dequeker E, Sermon K, Davies JL, Antinolo G, et al. Provision and quality assurance of preimplantation genetic diagnosis in Europe. Eur J Hum Genet. 2008;16(3):290–9. doi: 10.1038/sj.ejhg.5201976 18091772.

31. Harton GL, De Rycke M, Fiorentino F, Moutou C, SenGupta S, Traeger-Synodinos J, et al. ESHRE PGD consortium best practice guidelines for amplification-based PGD. Hum Reprod. 2011;26(1):33–40. Epub 2010/10/23. doi: 10.1093/humrep/deq231 20966462.

32. Ben-Nagi J, Wells D, Doye K, Loutradi K, Exeter H, Drew E, et al. Karyomapping: a single centre's experience from application of methodology to ongoing pregnancy and live-birth rates. Reprod Biomed Online. 2017;35(3):264–71. doi: 10.1016/j.rbmo.2017.06.004 28648921.

33. Gould RL, Griffin DK. Karyomapping and how is it improving preimplantation genetics? Expert Rev Mol Diagn. 2017;17(6):611–21. doi: 10.1080/14737159.2017.1325736 28459185.

34. Kubikova N, Babariya D, Sarasa J, Spath K, Alfarawati S, Wells D. Clinical application of a protocol based on universal next-generation sequencing for the diagnosis of beta-thalassaemia and sickle cell anaemia in preimplantation embryos. Reprod Biomed Online. 2018;37(2):136–44. doi: 10.1016/j.rbmo.2018.05.005 29853423.

35. Smith WM, Van Orsouw NJ, Fox EA, Kolodner RD, Vijg J, Eng C. Accurate, high-throughput "snapshot" detection of hMLH1 mutations by two-dimensional DNA electrophoresis. Genet Test. 1998;2(1):43–53. Epub 1999/08/28. doi: 10.1089/gte.1998.2.43 10464596.

36. Konkle BA, Huston H, Nakaya Fletcher S. Hemophilia A. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA)1993.

37. Darras BT, Urion DK, Ghosh PS. Dystrophinopathies. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA)1993.

38. Demko ZP, Simon AL, McCoy RC, Petrov DA, Rabinowitz M. Effects of maternal age on euploidy rates in a large cohort of embryos analyzed with 24-chromosome single-nucleotide polymorphism-based preimplantation genetic screening. Fertil Steril. 2016;105(5):1307–13. doi: 10.1016/j.fertnstert.2016.01.025 26868992.

39. Chiamchanya C, Visutakul P, Gumnarai N, Su-angkawatin W. Preimplantation genetic screening (PGS) in infertile female age > or = 35 years by fluorescence in situ hybridization of chromosome 13, 18, 21, X and Y. J Med Assoc Thai. 2008;91(11):1644–50. 19127783.

40. Friedenthal J, Maxwell SM, Munne S, Kramer Y, McCulloh DH, McCaffrey C, et al. Next generation sequencing for preimplantation genetic screening improves pregnancy outcomes compared with array comparative genomic hybridization in single thawed euploid embryo transfer cycles. Fertil Steril. 2018;109(4):627–32. doi: 10.1016/j.fertnstert.2017.12.017 29605407.

41. Cimadomo D, Fabozzi G, Vaiarelli A, Ubaldi N, Ubaldi FM, Rienzi L. Impact of Maternal Age on Oocyte and Embryo Competence. Front Endocrinol (Lausanne). 2018;9:327. doi: 10.3389/fendo.2018.00327 30008696.

42. Lamb B, Johnson E, Francis L, Fagan M, Riches N, Canada I, et al. Pre-implantation genetic testing: decisional factors to accept or decline among in vitro fertilization patients. J Assist Reprod Genet. 2018;35(9):1605–12. doi: 10.1007/s10815-018-1278-2 30074131.

43. Fritz R, Jindal S. Reproductive aging and elective fertility preservation. J Ovarian Res. 2018;11(1):66. doi: 10.1186/s13048-018-0438-4 30098598.

44. Zeng C, Xu JN, Zhou Y, Zhou YF, Zhu SN, Xue Q. Reproductive performance after surgery for endometriosis: predictive value of the revised American Fertility Society classification and the endometriosis fertility index. Gynecol Obstet Invest. 2014;77(3):180–5. doi: 10.1159/000358390 24603632.

45. Seyhan A, Ata B, Uncu G. The Impact of Endometriosis and Its Treatment on Ovarian Reserve. Semin Reprod Med. 2015;33(6):422–8. doi: 10.1055/s-0035-1567820 26594869.

46. Ozekinci M, Seven A, Olgan S, Sakinci M, Keskin U, Akar ME, et al. Does obesity have detrimental effects on IVF treatment outcomes? BMC Womens Health. 2015;15:61. doi: 10.1186/s12905-015-0223-0 26285703.

47. Kekre N, Antin JH. Hematopoietic stem cell transplantation donor sources in the 21st century: choosing the ideal donor when a perfect match does not exist. Blood. 2014;124(3):334–43. doi: 10.1182/blood-2014-02-514760 24914138.

48. Rafati M, Akhondi MM, Sadeghi MR, Tara SZ, Ghaffari SR. Preimplantation High-Resolution HLA Sequencing Using Next Generation Sequencing. Biol Blood Marrow Transplant. 2018;24(8):1575–80. doi: 10.1016/j.bbmt.2018.03.024 29649618.


Článek vyšel v časopise

PLOS One


2019 Číslo 11