Negative impact of gestational diabetes mellitus on progress of pelvic floor muscle electromyography activity: Cohort study


Autoři: Caroline B. Prudencio aff001;  Marilza V. C. Rudge aff001;  Fabiane A. Pinheiro aff001;  Carlos I. Sartorão Filho aff001;  Sthefanie K. Nunes aff001;  Cristiane R. Pedroni aff002;  Baerbel Junginger aff003;  Angélica M. P. Barbosa aff001
Působiště autorů: Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (Unesp), Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil aff001;  Department of Physiotherapy and Occupational Therapy, School of Philosophy and Sciences, São Paulo State University (Unesp), Universidade Estadual Paulista (UNESP), Marilia, São Paulo, Brazil aff002;  Gynecology Department, Charité University Hospital, Berlin, Germany aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223261

Souhrn

Background and objective

Pelvic floor muscles are involved in postural stability, in maintenance intra-abdominal pressure, and on mechanical support for pelvic organ. Gestational Diabetes Mellitus’ (GDM) pregnancies complicated by fetal macrosomia, large placenta and polyhydramnios contribute for abrupt and intense increase in maternal intra-abdominal pressure. Our objective was analyze the impact of GDM on pelvic floor muscle (PFM) electromyography (EMG) activity progress from 24–30 to 36–38 weeks of gestation. We conducted a prospective cohort study. PFM EMG was performed in nulliparous or primiparous women with one previous elective cesarean delivery and with or not GDM diagnosed by the American Diabetes Association criteria. A careful explanation of the muscle anatomy and functionality of the PFM was given before EMG assessment. The outcome measures were PFM recruitment and progress from 24–30 to 36–38 weeks of gestation analyzed by the normalized root mean square (RMS) during rest-activity, fast and hold pelvic floor muscle contraction.

Results

Fifty-two pregnant women were assigned to 2 groups: the GDM (n = 26) and normoglycemic (NG) (n = 26). The demographic and obstetric data showed homogeneity between the groups. PFM activity progress was decreased in rest-activity (P = 0.042) and hold contraction (P = 0.044) at 36–38 weeks of gestation in the GDM group relative to that in the NG group.

Conclusion

GDM group showed a progressive decrease in EMG-PFM activity during rest-activity and hold contractions from 24–30 to 36–38 weeks of gestation.

Klíčová slova:

Electromyography – Muscle contraction – Muscle functions – Nerve fibers – Pregnancy


Zdroje

1. Farrar D. Hyperglycemia in pregnancy: prevalence, impact, and management challenges. Int J Womens Heal. 2016; 519–527. doi: 10.2147/IJWH.S102117 27703397

2. Rudge MVC, Barbosa AMP, Sobrevia L, Gelaleti RB, Hallur RLS, Marcondes JPC, et al. Altered maternal metabolism during mild gestational hyperglycemia as a predictor of adverse perinatal outcomes: A comprehensive analysis. Biochim Biophys Acta—Mol Basis Dis. 2019; doi: 10.1016/j.bbadis.2019.05.014 31152867

3. American Diabetes Association. Standards of Medical Care in Diabetes—2015. Diabetes Care. 2015;38: S1–S2. doi: 10.2337/dc15-S001

4. Barbosa AMP, Dias A, Marini G, Calderon IMP, Witkin S, Rudge MVC. Urinary incontinence and vaginal squeeze pressure two years post-cesarean delivery in primiparous women with previous gestational diabetes mellitus. Clinics (Sao Paulo). 2011;66: 1341–1346. doi: 10.1590/S1807-59322011000800006 21915481

5. Piculo F, Marini G, Barbosa AMP, Damasceno DC, Matheus SMM, Felisbino SL, et al. Urethral striated muscle and extracellular matrix morphological characteristics among mildly diabetic pregnant rats: translational approach. Int Urogynecol J. 2014;25: 403–15. doi: 10.1007/s00192-013-2218-4 24043129

6. Marini G, Pascon Barbosa AM, Damasceno DC, Michelin Matheus SM, De Aquino Castro R, Castello Girão MJB, et al. Morphological changes in the fast vs slow fiber profiles of the urethras of diabetic pregnant rats. Urogynaecologia. 2011;25. http://dx.doi.org/10.4081/uij.2011.e9

7. Hilton TN, Tuttle LJ, Bohnert KL, Mueller MJ, Sinacore DR. Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Phys Ther. 2008;88: 1336–1344. doi: 10.2522/ptj.20080079 18801853

8. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126: 12–22. doi: 10.1172/JCI77812 26727229

9. Ørtenblad N, Nielsen J, Saltin B, Holmberg H-C. Role of glycogen availability in sarcoplasmic reticulum Ca 2+ kinetics in human skeletal muscle. J Physiol. 2011;589: 711–725. doi: 10.1113/jphysiol.2010.195982 21135051

10. Kuwabara S, Ogawara K, Hattori T, Suzuki Y, Hashimoto N. The Acute Effects of Glycemic Control on Axonal Excitability in HumanDiabetic Nerves. Internal Medicine. May 200241.

11. Rusu L, Cǎlina ML, Avramescu ET, Pǎun E, Vasilescu M. Neuromuscular investigation in diabetic polyneuropathy. Rom J Morphol Embryol. 2008;50: 283–290.

12. Vassimon FIA, Ferreira CHJ, Martins WP, Ferriani RA, de Andrade Batista RL, Bo K. Surface electromyography and ultrasound evaluation of pelvic floor muscles in hyperandrogenic women. Int Urogynecol J Pelvic Floor Dysfunct. 2016;27: 587–591. doi: 10.1007/s00192-015-2865-8 26476820

13. Allen MD, Doherty TJ, Rice CL, Kimpinski K. Physiology in Medicine: neuromuscular consequences of diabetic neuropathy. J Appl Physiol. 2016;121: 1–6. doi: 10.1152/japplphysiol.00733.2015 26989220

14. Micussi MT, Freitas R, Angelo P, Soares E, Lemos T, Maranhão T. Evaluation of the relationship between the pelvic floor muscles and insulin resistance. Diabetes, Metab Syndr Obes Targets Ther. 2015; 409. doi: 10.2147/DMSO.S85816 26357485

15. Enoka RM, Duchateau J. Inappropriate interpretation of surface EMG signals and muscle fiber characteristics impedes understanding of the control of neuromuscular function. J Appl Physiol. 2015;119: 1516–1518. doi: 10.1152/japplphysiol.00280.2015 26159758

16. Henderson JW, Wang S, Egger MJ, Masters M, Nygaard I. Can Women Correctly Contract Their Pelvic Floor Muscles Without Formal Instruction? Female Pelvic Med Reconstr Surg. 2013;19: 8–12. doi: 10.1097/SPV.0b013e31827ab9d0 23321652

17. Friedman S, Blomquist JL, Nugent JM, McDermott KC, Muñoz A, Handa VL. Pelvic muscle strength after childbirth. Obstet Gynecol. 2012;120: 1021–8. doi: http://10.1097/AOG.0b013e318265de39 23090518

18. Oliveira DCS de, Rezende PAM dos SL de, Silva MR da, Lizardo FB, Sousa G da C, Santos LA dos, et al. Análise eletromiográfica de músculos do membro inferior em exercícios proprioceptivos realizados com olhos abertos e fechados. Rev Bras Med do Esporte. 2012;18: 261–266. doi: 10.1590/S1517-86922012000400009

19. Merletti R, Rau G, Disselhorst-Klug C, Stegeman DF, Hägg GM. Recommendations for sensor locations on individual muscles [Internet]. 2014. Available: http://www.seniam.org/

20. Glazer HI. Glazer Intrapelvic SEM:G Assessment for the Diagnosis & Treatment of Post Radical Prostatectomy Urinary Incontinence. SURFACE ELECTROMYOGRAPHY (SEMG). Biofeedback Federation CIC; 2000.

21. Hacad CR, Glazer HI, Zambon JPC, Burti JS, Almeida FG. Is There Any Change in Pelvic Floor Electromyography During the First 6 Months After Radical Retropubic Prostatectomy? Appl Psychophysiol Biofeedback. 2015;40: 9–15. doi: 10.1007/s10484-015-9271-3 25735504

22. Marshall P, Murphy B. The validity and reliability of surface EMG to assess the neuromuscular response of the abdominal muscles to rapid limb movement. J Electromyogr Kinesiol. 2003;13: 477–89. Available: http://www.ncbi.nlm.nih.gov/pubmed/12932422 12932422

23. Haylen BT, Maher CF, Barber MD, Camargo S, Dandolu V, Digesu A, et al. Erratum to: An International Urogynecological Association (IUGA) / International Continence Society (ICS) joint report on the terminology for female pelvic organ prolapse (POP). Int Urogynecol J. 2016;27: 655–684. doi: 10.1007/s00192-016-3003-y 26984443

24. Hoffman B, Schorge J, Schaffer J. Obstetricia de Williams. 23rd ed. Hill M, editor. Artmed; 2013.

25. Chin H-Y, Lin K-C, Wang C-J, Chiang C-H, Kuo H-C. Paraurethral striated muscular structures and pelvic floor muscles contribute to resting urethral closure pressure in rats. Int Urogynecol J. 2012;23: 1631–1636. doi: 10.1007/s00192-012-1773-4 22569689

26. Smith MD, Coppieters MW, Hodges PW. Postural activity of the pelvic floor muscles is delayed during rapid arm movements in women with stress urinary incontinence. Int Urogynecol J. 2007;18: 901–911. doi: 10.1007/s00192-006-0259-7 17139463

27. Barbosa A, Dias A, Marini G, Calderon I. Urinary incontinence and vaginal squeeze pressure two years post-cesarean delivery in primiparous women with previous gestational diabetes mellitus. Clinics. 2011;66: 1341–1345. doi: 10.1590/S1807-59322011000800006 21915481

28. Turrina A, Martínez-González MA, Stecco C. The muscular force transmission system: Role of the intramuscular connective tissue. J Bodyw Mov Ther. 2013;17: 95–102. doi: 10.1016/j.jbmt.2012.06.001 23294690

29. Dipla K, Triantafyllou A, Grigoriadou I, Kintiraki E, Triantafyllou GA, Poulios P, et al. Impairments in microvascular function and skeletal muscle oxygenation in women with gestational diabetes mellitus: links to cardiovascular disease risk factors. Diabetologia. 2017;60: 192–201. doi: 10.1007/s00125-016-4129-7 27722775

30. Boyle KE, Hwang H, Janssen RC, DeVente JM, Barbour LA, Hernandez TL, et al. Gestational Diabetes Is Characterized by Reduced Mitochondrial Protein Expression and Altered Calcium Signaling Proteins in Skeletal Muscle. Salvi M, editor. PLoS One. 2014;9: e106872. doi: 10.1371/journal.pone.0106872 25216282

31. Cermenati G, Abbiati F, Cermenati S, Brioschi E, Volonterio A, Cavaletti G, et al. Diabetes-induced myelin abnormalities are associated with an altered lipid pattern: protective effects of LXR activation. J Lipid Res. 2012;53: 300–310. doi: 10.1194/jlr.M021188 22158827

32. Allen MD, Kimpinski K, Doherty TJ, Rice CL. Decreased muscle endurance associated with diabetic neuropathy may be attributed partially to neuromuscular transmission failure. J Appl Physiol. 2015;118: 1014–1022. doi: 10.1152/japplphysiol.00441.2014 25663671

33. Resende APM, Petricelli CD, Bernardes BT, Alexandre SM, Nakamura MU, Zanetti MRD. Electromyographic evaluation of pelvic floor muscles in pregnant and nonpregnant women. Int Urogynecol J. 2012;23: 1041–1045. doi: 10.1007/s00192-012-1702-6 22415702

34. Harvey M-A, Johnston SL, Davies G a L. Mid-trimester serum relaxin concentrations and post-partum pelvic floor dysfunction. Acta Obstet Gynecol Scand. 2008;87: 1315–21. doi: 10.1080/00016340802460321 18951211

35. Volløyhaug I, Mørkved S, Salvesen Ø, Salvesen KÅ. Assessment of pelvic floor muscle contraction with palpation, perineometry and transperineal ultrasound: a cross-sectional study. Ultrasound Obstet Gynecol. 2016;47: 768–773. doi: 10.1002/uog.15731 26300128

36. Batista RLA, Franco MM, Naldoni LM V, Duarte G, Oliveira AS, Ferreira CHJ. Biofeedback and the electromyographic activity of pelvic floor muscles in pregnant women. Rev Bras Fisioter. 2011;15: 386–92. 22002190


Článek vyšel v časopise

PLOS One


2019 Číslo 11