#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Structural analysis of the manganese transport regulator MntR from Bacillus halodurans in apo and manganese bound forms


Autoři: Myeong Yeon Lee aff001;  Dong Won Lee aff001;  Hyun Kyu Joo aff001;  Kang Hwa Jeong aff001;  Jae Young Lee aff001
Působiště autorů: Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224689

Souhrn

The manganese transport regulator MntR is a metal-ion activated transcriptional repressor of manganese transporter genes to maintain manganese ion homeostasis. MntR, a member of the diphtheria toxin repressor (DtxR) family of metalloregulators, selectively responds to Mn2+ and Cd2+ over Fe2+, Co2+ and Zn2+. The DtxR/MntR family members are well conserved transcriptional repressors that regulate the expression of metal ion uptake genes by sensing the metal ion concentration. MntR functions as a homo-dimer with one metal ion binding site per subunit. Each MntR subunit contains two domains: an N-terminal DNA binding domain, and a C-terminal dimerization domain. However, it lacks the C-terminal SH3-like domain of DtxR/IdeR. The metal ion binding site of MntR is located at the interface of the two domains, whereas the DtxR/IdeR subunit contains two metal ion binding sites, the primary and ancillary sites, separated by 9 Å. In this paper, we reported the crystal structures of the apo and Mn2+-bound forms of MntR from Bacillus halodurans, and analyze the structural basis of the metal ion binding site. The crystal structure of the Mn2+-bound form is almost identical to the apo form of MntR. In the Mn2+-bound structure, one subunit contains a binuclear cluster of manganese ions, the A and C sites, but the other subunit forms a mononuclear complex. Structural data about MntR from B. halodurans supports the previous hypothesizes about manganese-specific activation mechanism of MntR homologues.

Klíčová slova:

Crystal structure – Crystals – Dimerization – Glycerol – Hydrogen bonding – Magnesium – Manganese – Protein domains


Zdroje

1. Rosenzweig AC. Metallochaperones: Bind and deliver. Chemistry and Biology. 2002. doi: 10.1016/S1074-5521(02)00156-4

2. Papp-Wallace KM, Maguire ME. Manganese Transport and the Role of Manganese in Virulence. Annual Review of Microbiology. 2006;60 : 187–209. doi: 10.1146/annurev.micro.60.080805.142149 16704341

3. Torrents E. Ribonucleotide reductases: essential enzymes for bacterial life. Frontiers in Cellular and Infection Microbiology. 2014;4 : 1–9.

4. Kliegman JI, Griner SL, Helmann JD, Brennan RG, Glasfeld A. Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis. Biochemistry. 2006; doi: 10.1021/bi0524215 16533030

5. McGuire AM, Cuthbert BJ, Ma Z, Grauer-Gray KD, Brunjes Brophy M, Spear KA, et al. Roles of the A and C sites in the manganese-specific activation of MntR. Biochemistry. 2013; doi: 10.1021/bi301550t 23298157

6. Helmann JD. Specificity of metal sensing: Iron and manganese homeostasis in bacillus subtilis. Journal of Biological Chemistry. 2014. doi: 10.1074/jbc.R114.587071 25160631

7. Tanaka T, Shinkai A, Bessho Y, Kumarevel T, Yokoyama S. Crystal structure of the manganese transport regulatory protein from Escherichia coli. Proteins: Structure, Function and Bioinformatics. 2009; doi: 10.1002/prot.22541 19701940

8. Glasfeld A, Guedon E, Helmann JD, Brennan RG. Structure of the manganese-bound manganese transport regulator of Bacillus subtilis. Nature Structural Biology. 2003; doi: 10.1038/nsb951 12847518

9. Huang X, Shin JH, Pinochet-Barros A, Su TT, Helmann JD. Bacillus subtilis MntR coordinates the transcriptional regulation of manganese uptake and efflux systems. Molecular Microbiology. 2017; doi: 10.1111/mmi.13554 27748968

10. Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nature Reviews Microbiology. 2017. doi: 10.1038/nrmicro.2017.15 28344348

11. Que Q, Helmann JD. Manganese homestasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Molecular Microbiology. 2000; doi: 10.1046/j.1365-2958.2000.01811.x

12. Cong X, Yuan Z, Wang Z, Wei B, Xu S, Wang J. Crystal structures of manganese-dependent transcriptional repressor MntR (Rv2788) from Mycobacterium tuberculosis in apo and manganese bound forms. Biochemical and Biophysical Research Communications. 2018; doi: 10.1016/j.bbrc.2018.05.005 29730293

13. Schiering N, Tao X, Zeng H, Murphy JR, Petsko GA, Ringe D. Structures of the apo -⁠ and the metal ion-activated forms of the diphtheria tox repressor from Corynebacterium diphtheriae. Proceedings of the National Academy of Sciences of the United States of America. 1995; doi: 10.1073/pnas.92.21.9843 7568230

14. Pohl E, Holmes RK, Hol WGJ. Crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis shows both metal binding sites fully occupied. Journal of Molecular Biology. 1999; doi: 10.1006/jmbi.1998.2339 9887269

15. White A, Ding X, VanderSpek JC, Murphy JR, Ringe D. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. Nature. 1998;394 : 502–506. doi: 10.1038/28893 9697776

16. Qiu X, Verlinde CL, Zhang S, Schmitt MP, Holmes RK, Hol WG. Three-dimensional structure of the diphtheria toxin repressor in complex with divalent cation co-repressors. Structure. 1995; doi: 10.1016/S0969-2126(01)00137-X

17. Pandey R, Russo R, Ghanny S, Huang X, Helmann J, Rodriguez GM. MntR(Rv2788): A transcriptional regulator that controls manganese homeostasis in Mycobacterium tuberculosis. Molecular Microbiology. 2015; doi: 10.1111/mmi.13207 26337157

18. DeWitt MA, Kliegman JI, Helmann JD, Brennan RG, Farrens DL, Glasfeld A. The Conformations of the Manganese Transport Regulator of Bacillus subtilis in its Metal-free State. Journal of Molecular Biology. 2007; doi: 10.1016/j.jmb.2006.10.080 17118401

19. Lieser SA, Davis TC, Helmann JD, Cohen SM. DNA-Binding and Oligomerization Studies of the Manganese(II) Metalloregulatory Protein MntR from Bacillus subtilis. Biochemistry. 2003; doi: 10.1021/bi0350248 14580210

20. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology. 1997; doi: 10.1016/S0076-6879(97)76066-X

21. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. Journal of Applied Crystallography. 2007; doi: 10.1107/S0021889807021206 19461840

22. Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallographica Section D: Biological Crystallography. 2004; doi: 10.1107/S0907444904019158 15572765

23. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography. 2010; doi: 10.1107/S0907444909042073 20057044

24. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology. 2011; doi: 10.1038/msb.2011.75 21988835

25. Holm L, Laakso LM. Dali server update. Nucleic acids research. 2016; doi: 10.1093/nar/gkw357 27131377

26. Pohl E, Holmes RK, Hol WGJ. Motion of the DNA-binding domain with respect to the core of the diphtheria toxin repressor (DtxR) revealed in the crystal structures of apo -⁠ and holo-DtxR. Journal of Biological Chemistry. 1998; doi: 10.1074/jbc.273.35.22420 9712865

27. Wisedchaisri G, Holmes RK, Hol WGJ. Crystal structure of an IdeR-DNA complex reveals a conformational change in activated IdeR for base-specific interactions. Journal of Molecular Biology. 2004; doi: 10.1016/j.jmb.2004.07.083 15351642

28. Yeo HK, Park YW, Lee JY. Structural analysis and insight into metal-ion activation of the iron-dependent regulator from Thermoplasma acidophilum. Acta Crystallographica Section D: Biological Crystallography. 2014; doi: 10.1107/S1399004714004118 24816097


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

BONE ACADEMY 2025
nový kurz
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D, doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Eozinofilní zánět a remodelace
Autoři: MUDr. Lucie Heribanová

Hypertrofická kardiomyopatie: Moderní přístupy v diagnostice a léčbě
Autoři: doc. MUDr. David Zemánek, Ph.D., MUDr. Anna Chaloupka, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#