Molecular validation of clinical Pantoea isolates identified by MALDI-TOF

Autoři: Craig D. Soutar aff001;  John Stavrinides aff001
Působiště autorů: Department of Biology, University of Regina, Regina, Saskatchewan, Canada aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224731


The Enterobacterial genus Pantoea contains both free-living and host-associating species, with considerable debate as to whether documented reports of human infections by members of this species group are accurate. MALDI-TOF-based identification methods are commonly used in clinical laboratories as a rapid means of identification, but its reliability for identification of Pantoea species is unclear. In this study, we carried out cpn60-based molecular typing of 54 clinical isolates that had been identified as Pantoea using MALDI-TOF and other clinical typing methods. We found that 24% had been misidentified, and were actually strains of Citrobacter, Enterobacter, Kosakonia, Klebsiella, Pseudocitrobacter, members of the newly described Erwinia gerundensis, and even several unclassified members of the Enterobacteriaceae. The 40 clinical strains that were confirmed to be Pantoea were identified as Pantoea agglomerans, Pantoea allii, Pantoea dispersa, Pantoea eucalypti, and Pantoea septica as well as the proposed species group, Pantoea latae. Some species groups considered largely environmental or plant-associated, such as P. allii and P. eucalypti were also among clinical specimens. Our results indicate that MALDI-TOF-based identification methods may misidentify strains of the Enterobacteriaceae as Pantoea.

Klíčová slova:

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry – Phylogenetic analysis – Phylogenetics – Ribosomal RNA – Sequence analysis – Urine – Erwinia – Texas


1. Nadarasah G, Stavrinides J. Quantitative evaluation of the host-colonizing capabilities of the enteric bacterium Pantoea using plant and insect hosts. Microbiol (United Kingdom). 2014;160: 602–615. doi: 10.1099/mic.0.073452–0

2. Walterson AM, Stavrinides J. Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev. 2015;39: 968–984. doi: 10.1093/femsre/fuv027 26109597

3. Roper MC. Pantoea stewartii subsp. stewartii: Lessons learned from a xylem-dwelling pathogen of sweet corn. Mol Plant Pathol. 2011;12: 628–637. doi: 10.1111/j.1364-3703.2010.00698.x 21726365

4. Brady CL, Venter SN, Cleenwerck I, Engelbeen K, Vancanneyt M, Swings J, et al. Pantoea vagans sp. nov., Pantoea eucalypti sp. nov., Pantoea deleyi sp. nov. and Pantoea anthophila sp. nov. Int J Syst Evol Microbiol. 2009;59: 2339–2345. doi: 10.1099/ijs.0.009241-0 19620357

5. Coutinho TA, Venter SN. Pantoea ananatis: An unconventional plant pathogen. Mol Plant Pathol. 2009;10: 325–335. doi: 10.1111/j.1364-3703.2009.00542.x 19400836

6. Cruz AT, Cazacu AC, Allen CH. Pantoea agglomerans, a plant pathogen causing human disease. J Clin Microbiol. 2007;45: 1989–1992. doi: 10.1128/JCM.00632-07 17442803

7. Dutkiewicz J, Mackiewicz B, Lemieszek MK, Golec M, Milanowski J. Pantoea agglomerans: A mysterious bacterium of evil and good. Part III. Deleterious effects: Infections of humans, animals and plants. Ann Agric Environ Med. Institute of Rural Health; 2016;23: 197–205. doi: 10.5604/12321966.1203878 27294620

8. Van Rostenberghe H, Noraida R, Wan Pauzi WI, Habsah H, Zeehaida M, Rosliza AR, et al. The clinical picture of neonatal infection with Pantoea species. Jpn J Infect Dis. 2006;59: 120–121. 16632913

9. Bergman KA, Arends JP, Schölvinck EH. Pantoea agglomerans septicemia in three newborn infants. Pediatr Infect Dis J. 2007;26: 453–454. doi: 10.1097/01.inf.0000261200.83869.92 17468662

10. Rezzonico F, Smits THM, Duffy B. Misidentification slanders Pantoea agglomerans as a serial killer. J Hosp Infect. 2012;81: 137–139. doi: 10.1016/j.jhin.2012.02.013 22552165

11. Rezzonico F, Smits TH, Montesinos E, Frey JE, Duffy B. Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol. 2009;9. doi: 10.1186/1471-2180-9-204 19772624

12. Rezzonico F, Stockwell VO, Tonolla M, Duffy B, Smits THM. Pantoea clinical isolates cannot be accurately assigned to species based on metabolic profiling. Transpl Infect Dis. 2012;14: 220–221. doi: 10.1111/j.1399-3062.2011.00684.x 22093950

13. Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem. Clinical Chemistry; 2015;61: 100–11. doi: 10.1373/clinchem.2014.221770 25278500

14. Seng P, Rolain J-M, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. Future Medicine Ltd London, UK; 2010;5: 1733–1754. doi: 10.2217/fmb.10.127 21133692

15. van Veen SQ, Claas ECJ, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol. American Society for Microbiology (ASM); 2010;48: 900–7. doi: 10.1128/JCM.02071-09 20053859

16. Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. Frontiers Media SA; 2015;6: 791. doi: 10.3389/fmicb.2015.00791 26300860

17. Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. Narnia; 2012;36: 380–407. doi: 10.1111/j.1574-6976.2011.00298.x 22092265

18. Patel JB. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn. 2001;6: 313–321. doi: 10.1054/modi.2001.29158 11774196

19. Mignard S, Flandrois JP. 16S rRNA sequencing in routine bacterial identification: A 30-month experiment. J Microbiol Methods. 2006;67: 574–581. doi: 10.1016/j.mimet.2006.05.009 16859787

20. Fox GE, Wisotzkey JD, Jurtshuk P. How Close Is Close: 16S rRNA Sequence Identity May Not Be Sufficient To Guarantee Species Identity. Int J Syst Bacteriol. 1992;42: 166–170. doi: 10.1099/00207713-42-1-166 1371061

21. Brady C, Cleenwerck I, Venter S, Vancanneyt M, Swings J, Coutinho T. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol. 2008;31: 447–460. doi: 10.1016/j.syapm.2008.09.004 19008066

22. Tambong JT, Xu R, Kaneza CA, Nshogozabahizi JC. An in-depth analysis of a multilocus phylogeny identifies leuS as a reliable phylogenetic marker for the genus Pantoea. Evol Bioinforma. 2014;10: 115–125. doi: 10.4137/EBo.s15738 25125967

23. Brousseau R, Hill JE, Préfontaine G, Goh SH, Harel J, Hemmingsen SM. Streptococcus suis Serotypes Characterized by Analysis of Chaperonin 60 Gene Sequences. Appl Environ Microbiol. 2001;67: 4828–4833. doi: 10.1128/AEM.67.10.4828-4833.2001 11571190

24. Marston EL, Sumner JW, Regnery RL. Evaluation of intraspecies genetic variation within the 60 kDa heat-shock protein gene (groEL) of Bartonella species. IntJSystBacteriol. 1999;49 Pt 3: 1015–1023. doi: 10.1099/00207713-49-3-1015 10425758

25. Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988;333: 330–334. doi: 10.1038/333330a0 2897629

26. Goh SH, Potter S, Wood JO, Hemmingsen SM, Reynolds RP, Chow AW. HSP60 gene sequences as universal targets for microbial species identification: Studies with coagulase-negative staphylococci. J Clin Microbiol. 1996;34: 818–823. 8815090

27. Hill JE, Penny SL, Crowell KG, Goh SH, Hemmingsen SM. cpnDB: A chaperonin sequence database. Genome Res. 2004;14: 1669–1675. doi: 10.1101/gr.2649204 15289485

28. Funke G, Monnet D, deBernardis C, von Graevenitz A, Freney J. Evaluation of the VITEK 2 system for rapid identification of medically relevant gram-negative rods. J Clin Microbiol. American Society for Microbiology (ASM); 1998;36: 1948–52. Available: 9650942

29. McGregor A, Schio F, Beaton S, Boulton V, Perman M, Gilbert G. The MicroScan WalkAway diagnostic microbiology system—an evaluation. Pathology. 1995;27: 172–6. Available: doi: 10.1080/00313029500169822 7567148

30. Bushnell, Brian. BBMap: A Fast, Accurate, Splice-Aware Aligner. Conference: 9th Annual Genomics of Energy & Environment Meeting. 2014. doi:10.1186/1471-2105-13-238

31. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73: 5261–5267. doi: 10.1128/AEM.00062-07 17586664

32. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7. doi: 10.1038/msb.2011.75 21988835

33. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33: 1870–1874. doi: 10.1093/molbev/msw054 27004904

34. Lata P, Govindarajan SS, Qi F, Li J-L, Maurya SK, Sahoo MK, et al. De Novo Whole-Genome Sequence of Pantoea latae Strain AS1, Isolated from Zamia floridana Rhizosphere in Central Florida, USA. Genome Announc. 2017;5: e00640–17. doi: 10.1128/genomeA.00640-17 28705985

35. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA). Syst Appl Microbiol. 2013;36: 309–319. doi: 10.1016/j.syapm.2013.03.005 23632228

36. Paramel Jayaprakash T, Schellenberg JJ, Hill JE. Resolution and characterization of distinct cpn60-based subgroups of Gardnerella vaginalis in the vaginal microbiota. PLoS One. 2012;7: e43009. doi: 10.1371/journal.pone.0043009 22900080

37. Rezzonico F, Smits THM, Born Y, Blom J, Frey JE, Goesmann A, et al. Erwinia gerundensis sp. nov., a cosmopolitan epiphyte originally isolated from pome fruit trees. Int J Syst Evol Microbiol. 2016;66: 1583–1592. doi: 10.1099/ijsem.0.000920 26813696

38. Palmer M, Steenkamp ET, Coetzee MPA, Avontuur JR, Chan W-Y, van Zyl E, et al. Mixta gen. nov., a new genus in the Erwiniaceae. Int J Syst Evol Microbiol. 2018;68: 1396–1407. doi: 10.1099/ijsem.0.002540 29485394

39. Liberto MC, Matera G, Puccio R, Lo Russo T, Colosimo E, Focà E. Six cases of sepsis caused by Pantoea agglomerans in a teaching hospital. New Microbiol. 2009;32: 119–123. 19382678

40. Venincasa VD, Kuriyan AE, Flynn HW, Sridhar J, Miller D. Endophthalmitis caused by Pantoea agglomerans: Clinical features, antibiotic sensitivities, and outcomes. Clin Ophthalmol. 2015;9: 1203–1207. doi: 10.2147/OPTH.S80748 26185411

41. Delgado-Valverde M, Sojo-Dorado J, Pascual A, Rodriguez-Bano J. Clinical management of infections caused by multidrug-resistant Enterobacteriaceae. Ther Adv Infect Dis. 2013;1: 49–69. doi: 10.1177/2049936113476284 25165544

42. Bassetti M, Peghin M, Pecori D. The management of multidrug-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2016;29: 583–594. doi: 10.1097/QCO.0000000000000314 27584587

43. Brady CL, Cleenwerck I, Venter SN, Engelbeen K, De Vos P, Coutinho TA. Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoea septica sp. nov., Pantoea eucrina sp. nov., Pantoea brenneri sp. nov. and Pantoea conspicua sp. nov., and transfer of Pectobacterium cypripedii (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus as Pantoea cypripedii comb. nov. Int J Syst Evol Microbiol. 2010;60: 2430–2440. doi: 10.1099/ijs.0.017301-0 19946052

44. Schmid H, Weber C, Bogner JR, Schubert S. Isolation of a Pantoea dispersa-like strain from a 71-year-old woman with acute myeloid leukemia and multiple myeloma. Infection. 2003;31: 66–67. doi: 10.1007/s15010-002-3024-y 12608369

45. Angeletti S, Ceccarelli G, Vita S, Dicuonzo G, Lopalco M, Dedej E, et al. Unusual microorganisms and antimicrobial resistances in a group of Syrian migrants: Sentinel surveillance data from an asylum seekers centre in Italy. Travel Med Infect Dis. 2016;14: 115–122. doi: 10.1016/j.tmaid.2016.03.005 26987764

46. Hagiya H, Otsuka F. Pantoea dispersa bacteremia caused by central line-associated bloodstream infection. Brazilian J Infect Dis. The Brazilian Journal of Infectious Diseases and Contexto Publishing; 2014;18: 696–697. doi: 10.1016/j.bjid.2014.06.006 25179511

47. Mehar V, Yadav D, Sanghvi J, Gupta N, Singh K. Pantoea dispersa: An unusual cause of neonatal sepsis. Brazilian J Infect Dis. Elsevier; 2013;17: 726–728. doi: 10.1016/j.bjid.2013.05.013 24120830

48. Brady CL, Goszczynska T, Venter SN, Cleenwerck I, de Vos P, Gitaitis RD, et al. Pantoea allii sp. nov., isolated from onion plants and seed. Int J Syst Evol Microbiol. 2011;61: 932–937. doi: 10.1099/ijs.0.022921-0 20495023

49. De Baere T, Verhelst R, Labit C, Verschraegen G, Wauters G, Claeys G, et al. Bacteremic infection with Pantoea ananatis. J Clin Microbiol. 2004;42: 4393–4395. doi: 10.1128/JCM.42.9.4393-4395.2004 15365053

50. De Maayer P, Chan WY, Rezzonico F, Buhlmann A, Venter SN, Blom J, et al. Complete genome sequence of clinical isolate Pantoea ananatis LMG 5342. J Bacteriol. 2012;194: 1615–1616. doi: 10.1128/JB.06715-11 22374951

51. Kirzinger MWB, Nadarasah G, Stavrinides J. Insights into cross-kingdom plant pathogenic bacteria. Genes (Basel). Molecular Diversity Preservation International; 2011;2: 980–997. doi: 10.3390/genes2040980 24710301

52. Nadarasah G, Stavrinides J. Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol Rev. 2011;35: 555–575. doi: 10.1111/j.1574-6976.2011.00264.x 21251027

53. Kirzinger MWB, Butz CJ, Stavrinides J. Inheritance of Pantoea type III secretion systems through both vertical and horizontal transfer. Mol Genet Genomics. 2015;290: 2075–2088. doi: 10.1007/s00438-015-1062-2 25982743

54. Walterson AM, Smith DDN, Stavrinides J. Identification of a Pantoea biosynthetic cluster that directs the synthesis of an antimicrobial natural product. PLoS One. 2014;9: e96208. doi: 10.1371/journal.pone.0096208 24796857

55. Lim JA, Lee DH, Kim BY, Heu S. Draft genome sequence of Pantoea agglomerans R190, a producer of antibiotics against phytopathogens and foodborne pathogens. J Biotechnol. 2014;188: 7–8. doi: 10.1016/j.jbiotec.2014.07.440 25087741

56. Smith DDN, Nickzad A, Déziel E, Stavrinides J. A novel glycolipid biosurfactant confers grazing resistance upon Pantoea ananatis BRT175 against the social amoeba Dictyostelium discoideum. mSphere. 2016;1: e00075–15. doi: 10.1128/mSphere.00075-15 27303689

57. Soutar CD, Stavrinides J. The evolution of three siderophore biosynthetic clusters in environmental and host-associating strains of Pantoea. Mol Genet Genomics. 2018;293: 1453–1467. doi: 10.1007/s00438-018-1477-7 30027301

58. Russo TA, Olson R, MacDonald U, Beanan J, Davidsona BA. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun. 2015;83: 3325–3333. doi: 10.1128/IAI.00430-15 26056379

59. Russo TA, Olson R, MacDonald U, Metzger D, Maltese LM, Drake EJ, et al. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect Immun. 2014;82: 2356–2367. doi: 10.1128/IAI.01667-13 24664504

Článek vyšel v časopise


2019 Číslo 11