Clinical risk assessment in early pregnancy for preeclampsia in nulliparous women: A population based cohort study

Autoři: Anna Sandström aff001;  Jonathan M. Snowden aff003;  Jonas Höijer aff004;  Matteo Bottai aff004;  Anna-Karin Wikström aff001
Působiště autorů: Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden aff001;  Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden aff002;  School of Public Health, Oregon Health and Science University-Portland State University, Portland, Oregon, United States of America aff003;  Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225716



To evaluate the capacity of multivariable prediction of preeclampsia during pregnancy, based on detailed routinely collected early pregnancy data in nulliparous women.

Design and setting

A population-based cohort study of 62 562 pregnancies of nulliparous women with deliveries 2008–13 in the Stockholm-Gotland Counties in Sweden.


Maternal social, reproductive and medical history and medical examinations (including mean arterial pressure, proteinuria, hemoglobin and capillary glucose levels) routinely collected at the first visit in antenatal care, constitute the predictive variables. Predictive models for preeclampsia were created by three methods; logistic regression models using 1) pre-specified variables (similar to the Fetal Medicine Foundation model including maternal factors and mean arterial pressure), 2) backward selection starting from the full suite of variables, and 3) a Random forest model using the same candidate variables. The performance of the British National Institute for Health and Care Excellence (NICE) binary risk classification guidelines for preeclampsia was also evaluated. The outcome measures were diagnosis of preeclampsia with delivery <34, <37, and ≥37 weeks’ gestation.


A total of 2 773 (4.4%) nulliparous women subsequently developed preeclampsia. The pre-specified variables model was superior the other two models, regarding prediction of preeclampsia with delivery <34 and <37 weeks, both with areas under the curve of 0.68, and sensitivity of 30.6% (95% CI 24.5–37.2) and 29.2% (95% CI 25.2–33.4) at a 10% false positive rate, respectively. The performance of these customizable multivariable models at the chosen false positive rate, was significantly better than the binary NICE-guidelines for preeclampsia with delivery <37 and ≥37 weeks’ gestation.


Multivariable models in early pregnancy had a modest performance, although providing advantages over the NICE-guidelines, in predicting preeclampsia in nulliparous women. Use of a machine learning algorithm (Random forest) did not result in superior prediction.

Klíčová slova:

Blood pressure – Hypertensive disorders in pregnancy – Machine learning – Obstetrics and gynecology – Preeclampsia – Pregnancy – Sweden


1. Roberge S, Bujold E, Nicolaides KH. Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol. 2018;218(3):287–93 e1. Epub 2017/11/16. doi: 10.1016/j.ajog.2017.11.561 29138036.

2. Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco Matallana C, et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med. 2017;377(7):613–22. doi: 10.1056/NEJMoa1704559 28657417.

3. Mol BW, Roberts CT, Thangaratinam S, Magee LA, de Groot CJ, Hofmeyr GJ. Pre-eclampsia. Lancet. 2016;387(10022):999–1011. doi: 10.1016/S0140-6736(15)00070-7 26342729.

4. Souza JP, Gulmezoglu AM, Vogel J, Carroli G, Lumbiganon P, Qureshi Z, et al. Moving beyond essential interventions for reduction of maternal mortality (the WHO Multicountry Survey on Maternal and Newborn Health): a cross-sectional study. Lancet. 2013;381(9879):1747–55. Epub 2013/05/21. doi: 10.1016/S0140-6736(13)60686-8 23683641.

5. American College of Obstetricians and Gynecologists. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31. Epub 2013/10/24. doi: 10.1097/01.AOG.0000437382.03963.88 24150027.

6. WHO recommendations for Prevention and treatment of pre-eclampsia and eclampsia. [Internet]. 2011 [cited January 11, 2018].

7. Swedish Society for Obstetrics and Gynecology (SFOG), Reference group for Perinatology (In Swedish). Preeclampsia. Report no 72. 2014.

8. Porter T, Gyamfi-Bannerman C, Manuck T. ACOG Committee Opinion No. 743: Low-Dose Aspirin Use During Pregnancy. Obstetrics & Gynecology. 2018;132(1):e44–e52. doi: 10.1097/AOG.0000000000002708 29939940

9. National Institute for Health and Care Excellence (NICE). Hypertension in Pregnancy: diagnosis and management. NICE guideline NG133. [Internet]. 2019 [cited Accessed October 2nd, 2019].

10. Tan MY, Wright D, Syngelaki A, Akolekar R, Cicero S, Janga D, et al. Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: results of SPREE. Ultrasound Obstet Gynecol. 2018;51(6):743–50. Epub 2018/03/15. doi: 10.1002/uog.19039 29536574.

11. Wright D, Syngelaki A, Akolekar R, Poon LC, Nicolaides KH. Competing risks model in screening for preeclampsia by maternal characteristics and medical history. Am J Obstet Gynecol. 2015;213(1):62 e1–e10. Epub 2015/03/01. doi: 10.1016/j.ajog.2015.02.018 25724400.

12. Bartsch E, Medcalf KE, Park AL, Ray JG, High Risk of Pre-eclampsia Identification G. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ. 2016;353:i1753. Epub 2016/04/21. doi: 10.1136/bmj.i1753 27094586.

13. North RA, McCowan LM, Dekker GA, Poston L, Chan EH, Stewart AW, et al. Clinical risk prediction for pre-eclampsia in nulliparous women: development of model in international prospective cohort. BMJ. 2011;342:d1875. Epub 2011/04/09. doi: 10.1136/bmj.d1875 21474517.

14. Al-Rubaie Z, Askie LM, Ray JG, Hudson HM, Lord SJ. The performance of risk prediction models for pre-eclampsia using routinely collected maternal characteristics and comparison with models that include specialised tests and with clinical guideline decision rules: a systematic review. BJOG. 2016;123(9):1441–52. doi: 10.1111/1471-0528.14029 27225348.

15. Akolekar R, Syngelaki A, Poon L, Wright D, Nicolaides KH. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther. 2013;33(1):8–15. Epub 2012/08/22. doi: 10.1159/000341264 22906914.

16. Mosimann B, Pfiffner C, Amylidi-Mohr S, Risch L, Surbek D, Raio L. First trimester combined screening for preeclampsia and small for gestational age—a single centre experience and validation of the FMF screening algorithm. Swiss Med Wkly. 2017;147:w14498. Epub 2017/09/06. doi: 10.4414/smw.2017.14498 28871576.

17. Lobo GAR, Nowak PM, Panigassi AP, Lima AIF, Araujo E Junior, Nardozza LMM, et al. Validation of Fetal Medicine Foundation algorithm for prediction of pre-eclampsia in the first trimester in an unselected Brazilian population. J Matern Fetal Neonatal Med. 2017:1–7. Epub 2017/09/12. doi: 10.1080/14767058.2017.1378332 28889785.

18. Oliveira N, Magder LS, Blitzer MG, Baschat AA. First-trimester prediction of pre-eclampsia: external validity of algorithms in a prospectively enrolled cohort. Ultrasound Obstet Gynecol. 2014;44(3):279–85. doi: 10.1002/uog.13435 24913190.

19. Meertens LJE, Scheepers HCJ, van Kuijk SMJ, Aardenburg R, van Dooren IMA, Langenveld J, et al. External Validation and Clinical Usefulness of First Trimester Prediction Models for the Risk of Preeclampsia: A Prospective Cohort Study. Fetal Diagn Ther. 2018:1–13. Epub 2018/07/19. doi: 10.1159/000490385 30021205.

20. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018. Epub 2018/05/29. doi: 10.1016/j.preghy.2018.05.004 29803330.

21. O’Gorman N, Wright D, Syngelaki A, Akolekar R, Wright A, Poon LC, et al. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am J Obstet Gynecol. 2016;214(1):103 e1–e12. doi: 10.1016/j.ajog.2015.08.034 26297382.

22. The National Board of Health and Welfare. Official Statistics of Sweden. Statistics–Health and Medical Care. Pregnancies, Deliveries and Newborn Infants. The Swedish Medical Birth Register 1973–2014 Assisted Reproduction, treatment 1991–2013. [cited 2018 February 11].

23. Darcy AM, Louie AK, Roberts LW. Machine Learning and the Profession of Medicine. Jama-J Am Med Assoc. 2016;315(6):551–2. doi: 10.1001/jama.2015.18421 26864406

24. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. doi: 10.1023/A:1010933404324

25. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115. doi: 10.1038/nature21056 28117445

26. Pan I, Nolan LB, Brown RR, Khan R, van der Boor P, Harris DG, et al. Machine Learning for Social Services: A Study of Prenatal Case Management in Illinois. Am J Public Health. 2017;107(6):938–44. Epub 2017/04/21. doi: 10.2105/AJPH.2017.303711 28426306.

27. Ludvigsson JF, Andersson E, Ekbom A, Feychting M, Kim JL, Reuterwall C, et al. External review and validation of the Swedish national inpatient register. BMC Public Health. 2011;11:450. Epub 2011/06/11. doi: 10.1186/1471-2458-11-450 21658213.

28. Wettermark B, Hammar N, Fored CM, Leimanis A, Otterblad Olausson P, Bergman U, et al. The new Swedish Prescribed Drug Register—opportunities for pharmacoepidemiological research and experience from the first six months. Pharmacoepidemiology and drug safety. 2007;16(7):726–35. doi: 10.1002/pds.1294 16897791.

29. National Board of Health and Welfare. Diagnose codes of birth defects in the Swedish version of ICD-10 (Q00-Q99) not reported to the Surveillance Register of Birth Defects. 2009 [cited 2019 January 6th].

30. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31. Epub 2014/06/06. doi: 10.1093/eurheartj/ehu207 24898551.

31. Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: Developing a prognostic model. BMJ. 2009;338:b604. Epub 2009/04/02. doi: 10.1136/bmj.b604 19336487.

32. Brunelli VB, Prefumo F. Quality of first trimester risk prediction models for pre-eclampsia: a systematic review. Bjog. 2015;122(7):904–14. Epub 2015/03/13. doi: 10.1111/1471-0528.13334 25761437.

33. Wikstrom AK, Stephansson O, Cnattingius S. Previous preeclampsia and risks of adverse outcomes in subsequent nonpreeclamptic pregnancies. Am J Obstet Gynecol. 2011;204(2):148 e1–6. doi: 10.1016/j.ajog.2010.09.003 21055722.

34. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631–44. Epub 2010/07/06. doi: 10.1016/S0140-6736(10)60279-6 20598363.

35. Hutcheon JA, Lisonkova S, Joseph KS. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol. 2011;25(4):391–403. Epub 2011/02/22. doi: 10.1016/j.bpobgyn.2011.01.006 21333604.

36. Poon LC, Nicolaides KH. First-trimester maternal factors and biomarker screening for preeclampsia. Prenatal diagnosis. 2014;34(7):618–27. doi: 10.1002/pd.4397 24764257.

37. Macdonald-Wallis C, Lawlor DA, Fraser A, May M, Nelson SM, Tilling K. Blood pressure change in normotensive, gestational hypertensive, preeclamptic, and essential hypertensive pregnancies. Hypertension. 2012;59(6):1241–8. Epub 2012/04/25. doi: 10.1161/HYPERTENSIONAHA.111.187039 22526257.

38. Phaloprakarn C, Tangjitgamol S. Impact of high maternal hemoglobin at first antenatal visit on pregnancy outcomes: a cohort study. J Perinat Med. 2008;36(2):115–9. Epub 2008/03/12. doi: 10.1515/JPM.2008.018 18331205.

39. von Tempelhoff GF, Heilmann L, Rudig L, Pollow K, Hommel G, Koscielny J. Mean maternal second-trimester hemoglobin concentration and outcome of pregnancy: a population-based study. Clin Appl Thromb Hemost. 2008;14(1):19–28. Epub 2008/01/10. doi: 10.1177/1076029607304748 18182680.

40. O’Gorman N, Wright D, Poon LC, Rolnik DL, Syngelaki A, Wright A, et al. Accuracy of competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol. 2017;49(6):751–5. doi: 10.1002/uog.17399 28067011.

41. Hernandez-Diaz S, Toh S, Cnattingius S. Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study. BMJ. 2009;338:b2255. Epub 2009/06/23. doi: 10.1136/bmj.b2255 19541696.

42. Myers JE, Kenny LC, McCowan LM, Chan EH, Dekker GA, Poston L, et al. Angiogenic factors combined with clinical risk factors to predict preterm pre-eclampsia in nulliparous women: a predictive test accuracy study. BJOG. 2013;120(10):1215–23. Epub 2013/08/03. doi: 10.1111/1471-0528.12195 23906160.

43. Steyerberg EW, Harrell FE Jr. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol. 2016;69:245–7. Epub 2015/05/20. doi: 10.1016/j.jclinepi.2015.04.005 25981519.

44. Liu Q, Gu Q, Wu Z. Feature selection method based on support vector machine and shape analysis for high-throughput medical data. Comput Biol Med. 2017;91:103–11. Epub 2017/10/20. doi: 10.1016/j.compbiomed.2017.10.008 29049908.

Článek vyšel v časopise


2019 Číslo 11