Hip stress distribution - Predictor of dislocation in hip arthroplasties. A retrospective study of 149 arthroplasties

Autoři: Matevž Tomaževič aff001;  Tina Kaiba aff001;  Urban Kurent aff002;  Rihard Trebše aff003;  Matej Cimerman aff002;  Veronika Kralj-Iglič aff001
Působiště autorů: Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia aff001;  Department of Traumatology, Division of Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia aff002;  Orthopaedic Hospital Valdoltra, Ankaran, Slovenia aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225459


Dislocation after hip arthroplasty is still a major concern. Recent study of the volumetric wear of the cup has suggested that stresses studied in a one-legged stance model could predispose arthroplasty dislocation. The aim of this work was to study whether biomechanical parameters of contact stress distribution in total hip arthroplasty during a neutral hip position can predict a higher possibility of the arthroplasty dislocating. Biomechanical parameters were determined using 3-dimensional mathematical models of the one-legged stance within the HIPSTRESS method. Geometrical parameters were measured from standard anteroposterior X-ray images of the pelvis and proximal femora. Fifty-five patients subjected to total hip arthroplasty that later suffered dislocation of the head and, for comparison, ninety-four total hip arthroplasties that were functional at least 10 years after the implantation, were included in the study. Arthroplasties that suffered dislocation had on average a 6% higher resultant hip force than the control group (p = 0.004), 11% higher peak stress on the load-bearing area (p = 0.001) and a 50% more laterally positioned stress pole (p = 0.026), all parameters being less favorable in the group of unstable arthroplasties. There was no statistically significant difference in the gradient index or in the functional angle of the weight bearing. Our study showed that arthroplasties that show a tendency to push the head out of the cup in the representative body position—the one-legged stance—are prone to dislocation. An unfavorable resultant hip force, peak stress on the load bearing and laterally positioned stress pole are predictors of arthroplasty dislocation.

Klíčová slova:

Arthroplasty – Body weight – Hip – Pelvis – Prosthetics – Total hip arthroplasty – X-ray radiography


1. Finalised Patient Reported Outcome Measures (PROMs) in England for Hip and Knee Replacement Procedures (April 2017 to March 2018). In: NHS Digital [Internet]. [cited 16 Feb 2019]. Available: https://digital.nhs.uk/data-and-information/publications/statistical/patient-reported-outcome-measures-proms/hip-and-knee-replacement-procedures—april-2017-to-march-2018

2. Ferguson RJ, Palmer AJ, Taylor A, Porter ML, Malchau H, Glyn-Jones S. Hip replacement. The Lancet. 2018;392: 1662–1671. doi: 10.1016/S0140-6736(18)31777-X

3. Annual reports from The Swedish Hip Arthroplasty Register · Svenska höftprotesregistret. [cited 17 Jun 2018]. Available: https://shpr.registercentrum.se/shar-in-english/annual-reports-from-the-swedish-hip-arthroplasty-register/p/rkeyyeElz

4. Goel A, Lau EC, Ong KL, Berry DJ, Malkani AL. Dislocation Rates Following Primary Total Hip Arthroplasty Have Plateaued in the Medicare Population. J Arthroplasty. 2015;30: 743–746. doi: 10.1016/j.arth.2014.11.012 25573179

5. Berry DJ. Effect of Femoral Head Diameter and Operative Approach on Risk of Dislocation After Primary Total Hip Arthroplasty. J Bone Jt Surg Am. 2005;87: 2456. doi: 10.2106/JBJS.D.02860 16264121

6. Badarudeen S, Shu AC, Ong KL, Baykal D, Lau EC, Malkani AL. Complications After Revision Total Hip Arthroplasty in the Medicare Population. J Arthroplasty. 2017;32: 1954–1958. doi: 10.1016/j.arth.2017.01.037 28236550

7. Forde B, Engeln K, Bedair H, Bene N, Talmo C, Nandi S. Restoring femoral offset is the most important technical factor in preventing total hip arthroplasty dislocation. J Orthop. 2018;15: 131–133. doi: 10.1016/j.jor.2018.01.026 29657456

8. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Jt Surg. 1978;60: 217–220.

9. Yoon Y-S, Hodgson AJ, Tonetti J, Masri BA, Duncan CP. Resolving inconsistencies in defining the target orientation for the acetabular cup angles in total hip arthroplasty. Clin Biomech. 2008;23: 253–259. doi: 10.1016/j.clinbiomech.2007.10.014 18069102

10. Abdel MP, von Roth P, Jennings MT, Hanssen AD, Pagnano MW. What Safe Zone? The Vast Majority of Dislocated THAs Are Within the Lewinnek Safe Zone for Acetabular Component Position. Clin Orthop. 2016;474: 386–391. doi: 10.1007/s11999-015-4432-5 26150264

11. Kluess D, Martin H, Mittelmeier W, Schimtz K-P, Bader R. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement. Med Eng Phys. 2007;29: 465–471. doi: 10.1016/j.medengphy.2006.07.001 16901743

12. Bunn A, Colwell CW, D’Lima DD. Effect of head diameter on passive and active dynamic hip dislocation. J Orthop Res. 2014;32: 1525–1531. doi: 10.1002/jor.22659 24961686

13. Nadzadi ME, Pedersen DR, Yack HJ, Callaghan JJ, Brown TD. Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation. J Biomech. 2003;36: 577–591. doi: 10.1016/s0021-9290(02)00232-4 12600348

14. Elkins JM, Kruger KM, Pedersen DR, Callaghan JJ, Brown TD. Edge-Loading Severity as a Function of Cup Lip Radius in Metal-on-Metal Total Hips–A Finite Element Analysis. J Orthop Res Off Publ Orthop Res Soc. 2012;30: 169–177. doi: 10.1002/jor.21524 21812025

15. Scifert CF, Brown TD, Lipman JD. Finite element analysis of a novel design approach to resisting total hip dislocation. Clin Biomech. 1999;14: 697–703. doi: 10.1016/S0268-0033(99)00054-6

16. Heckmann N, McKnight B, Stefl M, Trasolini N, Ike H, Dorr L. Late Dislocation Following Total Hip Arthroplasty: Spinopelvic Imbalance as a Causative Factor. J Bone Jt Surg. 2018;100: 1845–1853. doi: 10.2106/JBJS.18.00078 30399079

17. Ike H, Dorr L, Trasolini N, Stefl M, McKnight B, Heckmann N. Spine-Pelvis-Hip Relationship in the Functioning of a Total Hip Replacement. J Bone Jt Surg. 2018;100: 1606–1615. doi: 10.2106/JBJS.17.00403 30234627

18. Parvizi J, Wade F, Rapuri V, Springer B, Berry D, Hozack W. Revision Hip Arthroplasty for Late Instability Secondary to Polyethylene Wear. Clin Orthop. 2006;447: 66–69. doi: 10.1097/01.blo.0000218751.14989.a6 16672896

19. Rowan FE, Benjamin B, Pietrak JR, Haddad FS. Prevention of Dislocation After Total Hip Arthroplasty. J Arthroplasty. 2018;33: 1316–1324. doi: 10.1016/j.arth.2018.01.047 29525344

20. Tanino H, Harman MK, Banks SA, Hodge WA. Association between dislocation, impingement, and articular geometry in retrieved acetabular polyethylene cups. J Orthop Res. 2007;25: 1401–1407. doi: 10.1002/jor.20410 17471491

21. Ipavec M, Brand RA, Pedersen DR, Mavčič B, Kralj-Iglič V, Iglič A. Mathematical modelling of stress in the hip during gait. J Biomech. 1999;32: 1229–1235. doi: 10.1016/s0021-9290(99)00119-0 10541074

22. Iglič A, Srakar F, Antolic V. Influence of the pelvic shape on the biomechanical status of the hip. Clin Biomech. 1993;8: 223–224. doi: 10.1016/0268-0033(93)90019-E

23. Kralj-Iglič V, Dolinar D, Ivanovski M, List I, Daniel M. Role of Biomechanical Parameters in Hip Osteoarthritis and Avascular Necrosis of Femoral Head. In: Naik GR, editor. Applied Biological Engineering—Principles and Practice. InTech; 2012. Available: http://www.intechopen.com/books/applied-biological-engineering-principles-and-practice/role-of-biomechanical-parameters-in-hip-osteoarthritis-and-avascular-necrosis-of-femoral-head-

24. Kralj-Iglič V. Validation of Mechanical Hypothesis of hip Arthritis Development by HIPSTRESS Method. In: Chen Q, editor. Osteoarthritis—Progress in Basic Research and Treatment. InTech; 2015. Available: http://www.intechopen.com/books/osteoarthritis-progress-in-basic-research-and-treatment/validation-of-mechanical-hypothesis-of-hip-arthritis-development-by-hipstress-method

25. Košak R, Kralj-Iglič V, Iglič A, Daniel M. Polyethylene wear is related to patient-specific contact stress in THA. Clin Orthop. 2011;469: 3415–3422. doi: 10.1007/s11999-011-2078-5 21948311

26. Košak R, Antolič V, Pavlovčič V, Kralj-Iglič V, Milošev I, Vidmar G, et al. Polyethylene wear in total hip prostheses: the influence of direction of linear wear on volumetric wear determined from radiographic data. Skeletal Radiol. 2003;32: 679–686. doi: 10.1007/s00256-003-0685-2 13680199

27. Rijavec B, Košak R, Daniel M, Kralj-IgliČ V, Dolinar D. Effect of cup inclination on predicted contact stress-induced volumetric wear in total hip replacement. Comput Methods Biomech Biomed Engin. 2015;18: 1468–1473. doi: 10.1080/10255842.2014.916700 24830356

28. Krein SW, Chao EYS. Biomechanics of bipolar hip endoprostheses. J Orthop Res. 1984;2: 356–368. doi: 10.1002/jor.1100020408 6527161

29. Debevec H, Pedersen DR, Iglicč A, Daniel M. One-Legged Stance as a Representative Static Body Position for Calculation of Hip Contact Stress Distribution in Clinical Studies. J Appl Biomech. 2010;26: 522–525. doi: 10.1123/jab.26.4.522 21245514

30. Iglič A, Srakar F, Antolič V, Kralj-Iglič V, Batagelj V. Mathematical analysis of Chiari osteotomy. Acta Orthop Iugosl. 1990;20: 35–39.

31. Iglič A, Kralj-Iglič V, Daniel M, Maček-Lebar A. Computer Determination of Contact Stress Distribution and Size of Weight Bearing Area in the Human Hip Joint. Comput Methods Biomech Biomed Engin. 2002;5: 185–192. doi: 10.1080/10255840290010300 12186728

32. Mavčič B, Pompe B, Antolič V, Daniel M, Iglič A, Kralj‐Iglič V. Mathematical estimation of stress distribution in normal and dysplastic human hips. J Orthop Res. 2002;20: 1025–1030. doi: 10.1016/S0736-0266(02)00014-1 12382969

33. Mavčič B, Iglič A, Kralj-Iglič V, Brand RA, Vengust R. Cumulative Hip Contact Stress Predicts Osteoarthritis in DDH. Clin Orthop. 2008;466: 884–891. doi: 10.1007/s11999-008-0145-3 18288549

34. Kralj M, Mavčič B, Antolič V, Iglič A, Kralj-Iglič V. The Bernese periacetabular osteotomy: clinical, radiographic and mechanical 7–15-year follow-up of 26 hips. Acta Orthop. 2005;76: 833–840. doi: 10.1080/17453670510045453 16470438

35. Recnik G, Kralj-Iglič V, Iglič A, Antolič V, Kramberger S, Vengust R. Higher peak contact hip stress predetermines the side of hip involved in idiopathic osteoarthritis. Clin Biomech. 2007;22: 1119–1124. doi: 10.1016/j.clinbiomech.2007.08.002 17868960

36. Recnik G, Vengust R, Kralj-Iglič V, Vogrin M, Krajnc Z, Kramberger S. Association between Sub-Clinical Acetabular Dysplasia and a Younger Age at Hip Arthroplasty in Idiopathic Osteoarthritis. J Int Med Res. 2009 [cited 10 Mar 2017]. doi: 10.1177/147323000903700541 19930871

37. Pompe B, Daniel M, Sochor M, Vengust R, Kralj-Iglic V, Iglic A. Gradient of contact stress in normal and dysplastic human hips. Med Eng Phys. 2003;25: 379–385. doi: 10.1016/s1350-4533(03)00014-6 12711235

38. Pompe B, Antolic V, Iglic A, Jaklic A, Krajl-Iglic V, Mavcic B. How should dysplastic human hips be evaluated? Cell Mol Biol Lett. 2002;7: 144–146. 11944071

39. Dargel J, Oppermann J, Brüggemann G-P, Eysel P. Dislocation Following Total Hip Replacement. Dtsch Ärztebl Int. 2014;111: 884–890. doi: 10.3238/arztebl.2014.0884 25597367

40. Kim Y-H, Choi Y, Kim J-S. Influence of Patient-, Design-, and Surgery-Related Factors on Rate of Dislocation After Primary Cementless Total Hip Arthroplasty. J Arthroplasty. 2009;24: 1258–1263. doi: 10.1016/j.arth.2009.03.017 19896063

41. Sikes CV, Lai LP, Schreiber M, Mont MA, Jinnah RH, Seyler TM. Instability After Total Hip Arthroplasty. J Arthroplasty. 2008;23: 59–63. doi: 10.1016/j.arth.2008.06.032 18922375

42. Soong M, Rubash HE, Macaulay W. Dislocation After Total Hip Arthroplasty. J Am Acad Orthop Surg. 2004;12: 314–321. doi: 10.5435/00124635-200409000-00006 15469226

43. Moriarity A, Ellanti P, Talha S, McKenna J. Dislocation and dissociation of bipolar hip hemiarthroplasty. BMJ Case Rep. 2015; bcr2015210282. doi: 10.1136/bcr-2015-210282 26178002

44. Brennan MSA, Khan F, Kiernan C, Queally JM, McQuillan J, Gormley IC, et al. Dislocation of Primary Total Hip Arthroplasty and the Risk of Redislocation: HIP Int. 2018 [cited 23 Apr 2018]. doi: 10.5301/HIP.2012.9747 23100149

45. Brown TD, Elkins JM, Pedersen DR, Callaghan JJ. Impingement and Dislocation in Total HIP Arthroplasty: Mechanisms and Consequences. Iowa Orthop J. 2014;34: 1. 25328453

46. Eggli S, Pisan M, Müller ME. The value of preoperative planning for total hip arthroplasty. J Bone Joint Surg Br. 1998;80: 382–390. doi: 10.1302/0301-620x.80b3.7764 9619923

Článek vyšel v časopise


2019 Číslo 11