Characterizing the Randot Preschool stereotest: Testability, norms, reliability, specificity and sensitivity in children aged 2-11 years


Autoři: Jenny C. A. Read aff001;  Sheima Rafiq aff001;  Jess Hugill aff001;  Therese Casanova aff001;  Carla Black aff001;  Adam O’Neill aff001;  Vicente Puyat aff001;  Helen Haggerty aff002;  Kathryn Smart aff002;  Christine Powell aff002;  Kate Taylor aff002;  Michael P. Clarke aff001;  Kathleen Vancleef aff001
Působiště autorů: Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, England, United Kingdom aff001;  Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, England, United Kingdom aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224402

Souhrn

Purpose

To comprehensively assess the Randot Preschool stereo test in young children, including testability, normative values, test/retest reliability and sensitivity and specificity for detecting binocular vision disorders.

Methods

We tested 1005 children aged 2–11 years with the Randot Preschool stereo test, plus a cover/uncover test to detect heterotropia. Monocular visual acuity was assessed in both eyes using Keeler Crowded LogMAR visual acuity test for children aged 4 and over.

Results

Testability was very high: 65% in two-year-olds, 92% in three-year-olds and ~100% in older children. Normative values: In 389 children aged 2–5 with apparently normal vision, 6% of children scored nil (stereoblind). In those who obtained a threshold, the mean log threshold was 2.06 log10 arcsec, corresponding to 114 arcsec, and the median threshold was 100 arcsec. Most older children score 40 arcsec, the best available score. We found a small sex difference, with girls scoring slightly but significantly better. Test/retest reliability: ~99% for obtaining any score vs nil. Agreement between stereo thresholds is poor in children aged 2–5; 95% limit of agreement = 0.7 log10 arcsec: five-fold change in stereo threshold may occur without any change in vision. In children over 5, the test essentially acts only as a binary classifier since almost all non-stereoblind children score 40 arcsec. Specificity (true negative rate): >95%. Sensitivity (true positive rate): poor, <50%, i.e. around half of children with a demonstrable binocular vision abnormality score well on the Randot Preschool.

Conclusions

The Randot Preschool is extremely accessible for even very young children, and is very reliable at classifying children into those who have any stereo vision vs those who are stereoblind. However, its ability to quantify stereo vision is limited by poor repeatability in children aged 5 and under, and a very limited range of scores relevant to children aged over 5.

Klíčová slova:

Eyes – Children – Normal distribution – Research validity – Schools – Vision – Visual acuity – Binocular vision


Zdroje

1. Bradshaw MF, Glennerster A. Stereoscopic acuity and observation distance. Spat Vis. 2006/01/18. 2006;19: 21–36. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16411481 16411481

2. Elliott S, Shafiq A. Interventions for infantile esotropia. Cochrane Database Syst Rev. 2013;7: CD004917. doi: 10.1002/14651858.CD004917.pub3 23897277

3. Read JCA. Stereo vision and strabismus. Eye (Lond). 2015;29: 214–24. doi: 10.1038/eye.2014.279 25475234

4. Li T, Shotton K. Conventional occlusion versus pharmacologic penalization for amblyopia. Cochrane Database Syst Rev. 2009; CD006460. doi: 10.1002/14651858.CD006460.pub2 19821369

5. Rowe FJ, Noonan CP. Botulinum toxin for the treatment of strabismus. Cochrane Database Syst Rev. 2012;2: CD006499. doi: 10.1002/14651858.CD006499.pub3 22336817

6. Stewart CE, Wallace MP, Stephens DA, Fielder AR, Moseley MJ, Cooperative M. The effect of amblyopia treatment on stereoacuity. J AAPOS. 2013;17: 166–173. doi: 10.1016/j.jaapos.2012.10.021 23622448

7. Wong AM. Timing of surgery for infantile esotropia: sensory and motor outcomes. Can J Ophthalmol. 2008;43: 643–651. doi: 10.3129/i08-115 19020629

8. Adams WE, Leske DA, Hatt SR, Holmes JM. Defining real change in measures of stereoacuity. Ophthalmology. 2008/12/19. 2009;116: 281–285. doi: 10.1016/j.ophtha.2008.09.012 19091410

9. Broadbent H, Westall C. An evaluation of techniques for measuring stereopsis in infants and young children. Ophthalmic Physiol Opt. 1990/01/01. 1990;10: 3–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/2184389 2184389

10. Simons K. A comparison of the Frisby, Random-Dot E, TNO, and Randot circles stereotests in screening and office use. Arch Ophthalmol. 1981/03/01. 1981;99: 446–452. Available: http://www.ncbi.nlm.nih.gov/pubmed/7213163 doi: 10.1001/archopht.1981.03930010448011 7213163

11. Vancleef K, Read JCA. Which Stereotest do You Use? A Survey Research Study in the British Isles, the United States and Canada. Br Ir Orthopt J. 2019;15: 15–24. doi: 10.22599/bioj.120

12. Birch E, Williams C, Drover J, Fu V, Cheng C, Northstone K, et al. Randot Preschool Stereoacuity Test: normative data and validity. J AAPOS. 2007/08/28. 2008;12: 23–26. doi: 10.1016/j.jaapos.2007.06.003 17720573

13. Afsari S, Rose KA, Pai AS, Gole GA, Leone JF, Burlutsky G, et al. Diagnostic reliability and normative values of stereoacuity tests in preschool-aged children. Br J Ophthalmol. 2013;97: 308–313. doi: 10.1136/bjophthalmol-2012-302192 23292927

14. Tarczy-Hornoch K, Lin J, Deneen J, Cotter SA, Azen SP, Borchert MS, et al. Stereoacuity Testability in African-American and Hispanic Pre-School Children. Optom Vis Sci. 2008;85: 158–163. doi: 10.1097/OPX.0b013e3181643ea7 18317330

15. Yang JW, Son MH, Yun IH. A Study on the Clinical Usefullness of Digitalized Random-dot Stereoacuity Test. Korean J Ophthalmol. 2004;18: 154. doi: 10.3341/kjo.2004.18.2.154 15635829

16. Pai AS, Rose KA, Samarawickrama C, Fotedar R, Burlutsky G, Varma R, et al. Testability of refraction, stereopsis, and other ocular measures in preschool children: the Sydney Paediatric Eye Disease Study. J AAPOS. 2012/04/25. 2012;16: 185–192. doi: 10.1016/j.jaapos.2011.09.017 22525178

17. Trager MJ, Dirani M, Fan Q, Gazzard G, Selvaraj P, Chia A, et al. Testability of Vision and Refraction in Preschoolers: The Strabismus, Amblyopia, and Refractive Error Study in Singaporean Children. Am J Ophthalmol. 2009;148: 235–241.e6. doi: 10.1016/j.ajo.2009.02.037 19426960

18. Fawcett SL, Birch EE. Interobserver test-retest reliability of the Randot preschool stereoacuity test. J AAPOS. 2000/12/22. 2000;4: 354–358. doi: 10.1067/mpa.2000.110340 11124670

19. Smith SJ, Leske DA, Hatt SR, Holmes JM. Stereoacuity Thresholds before and after Visual Acuity Testing. Ophthalmology. 2012;119: 164–169. doi: 10.1016/j.ophtha.2011.06.041 21924502

20. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1: 307–310. Available: http://www.ncbi.nlm.nih.gov/pubmed/2868172 2868172

21. Anderman C, Cheadle A, Curry S, Diehr P, Shultz L, Wagner E. Selection Bias Related To Parental Consent in School-Based Survey Research. Eval Rev. 1995;19: 663–674. doi: 10.1177/0193841X9501900604

22. Severson HH, Ary D V. Sampling bias due to consent procedures with adolescents. Addict Behav. 1983;8: 433–437. doi: 10.1016/0306-4603(83)90046-1 6610283

23. Public Health England. Child vision screening: Service specification. Available: https://www.gov.uk/government/publications/child-vision-screening/service-specification

24. Stidwill D, Fletcher R. Normal Binocular Vision: Theory, Investigation and Practical Aspects. Wiley-Blackwell; 2011.

25. Vancleef K, Serrano-Pedraza I, Sharp C, Slack G, Black C, Casanova T, et al. ASTEROID: A New Clinical Stereotest on an Autostereo 3D Tablet. Transl Vis Sci Technol. 2019;8: 25. doi: 10.1167/tvst.8.1.25 30834173

26. Serrano-Pedraza I, Herbert W, Villa-Laso L, Widdall M, Vancleef K, Read JCA. The stereoscopic anisotropy develops during childhood. Investig Ophthalmol Vis Sci. 2016;57. doi: 10.1167/iovs.15-17766 26962692

27. Hess RF, Ding R, Clavagnier S, Liu C, Guo C, Viner C, et al. A Robust and Reliable Test to Measure Stereopsis in the Clinic. Investig Opthalmology Vis Sci. 2016;57: 798–804. doi: 10.1167/iovs.15-18690 26934135

28. Bosten JM, Goodbourn PT, Lawrance-Owen AJ, Bargary G, Hogg RE, Mollon JD. A population study of binocular function. Vision Res. 2015;110: 34–50. doi: 10.1016/j.visres.2015.02.017 25771401

29. Schmidt P, Maguire M, Kulp MT, Dobson V, Quinn G. Random Dot E stereotest: testability and reliability in 3- to 5-year-old children. J AAPOS. 2006/12/26. 2006;10: 507–514. doi: 10.1016/j.jaapos.2006.08.019 17189143

30. Venables WN (William N., Ripley BD, Venables WN (William N). Modern applied statistics with S. Available: https://cran.r-project.org/web/packages/MASS/citation.html

31. Shafiee D, Jafari AR, Shafiee AA. Correlation between Interpupillary Distance and stereo acuity. Bull Environ Pharmacol Life Sci. 2014;3: 26–33.

32. Zaroff CM, Knutelska M, Frumkes TE. Variation in stereoacuity: normative description, fixation disparity, and the roles of aging and gender. Invest Ophthalmol Vis Sci. 2003;44: 891–900. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12556426 doi: 10.1167/iovs.02-0361 12556426

33. Mai MN, Schlueter MA. The Relationship Between Pupillary Distance and Depth Perception in Humans. Investigative Ophthalmology & Visual Science. [Association for Research in Vision and Ophthalmology, etc.]; 2010. pp. 4359–4359. Available: https://iovs.arvojournals.org/article.aspx?articleid=2372974

34. Eom Y, Song JS, Ahn SE, Kang SY, Suh YW, Oh J, et al. Effects of interpupillary distance on stereoacuity: the Frisby Davis distance stereotest versus a 3-dimensional distance stereotest. Jpn J Ophthalmol. 2013/07/06. 2013. doi: 10.1007/s10384-013-0253-9 23828094

35. Pryor HB. Objective measurement of interpupillary distance. Pediatrics. 1969;44: 973–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/5365062 5365062

36. Fledelius HC, Stubgaard M. Changes in eye position during growth and adult life as based on exophthalmometry, interpupillary distance, and orbital distance measurements. Acta Ophthalmol. 1986;64: 481–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/3492853

37. Horwood AM, Riddell PM. Gender differences in early accommodation and vergence development. Ophthalmic Physiol Opt. 2008;28: 115–126. doi: 10.1111/j.1475-1313.2008.00547.x 18339042

38. Gwiazda J, Bauer J, Held R. Binocular function in human infants: correlation of stereoptic and fusion-rivalry discriminations. J Pediatr Ophthalmol Strabismus. 1989/05/01. 1989;26: 128–132. Available: http://www.ncbi.nlm.nih.gov/pubmed/2723974 2723974

39. Held R, Thorn F, Gwiazda J, Bauer J. Development of binocularity and its sexual differentiation. In: Vital-Durand F, Atkinson J, Braddick OJ, editors. Infant Vision. Oxford: OUP; 1996. doi: 10.1093/acprof:oso/9780198523161.003.0017

40. Seuntiëns P, Meesters L, IJsselsteijn W. Perceived quality of compressed stereoscopic images: effects of symmetric and asymmetric JPEG coding and camera separation. ACM Trans Appl Percept. 2000.

41. Yeh YY, Silverstein LD. Limits of fusion and depth judgment in stereoscopic color displays. Hum Factors. 1990;32: 45–60. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2376407 doi: 10.1177/001872089003200104 2376407

42. Tsirlin I, Wilcox LM, Allison RS. The Effect of Crosstalk on the Perceived Depth From Disparity and Monocular Occlusions. IEEE Trans Broadcast. 2011;57: 445–453. doi: 10.1109/TBC.2011.2105630


Článek vyšel v časopise

PLOS One


2019 Číslo 11