#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Golgi reassembly and stacking protein 65 downregulation is required for the anti-cancer effect of dihydromyricetin on human ovarian cancer cells


Autoři: Fengjie Wang aff001;  Xianbing Chen aff002;  Depei Yuan aff002;  Yongfen Yi aff001;  Yi Luo aff001
Působiště autorů: Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China aff001;  Minda Hospital of Hubei Minzu University, Enshi, Hubei, China aff002;  Department of Gynecology and Obstetrics, The First Affiliated Hospital Of Chongqing Medical University, Chongqing, China aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0225450

Souhrn

Golgi reassembly and stacking protein 65 (GRASP65), which has been involved in cancer progression, is associated with tumor growth and cell apoptosis. Dihydromyricetin (DHM) has demonstrated antitumor activity in different types of human cancers. However, the pharmacological effects of DHM on ovarian cancer (OC) and the molecular mechanisms that underlie these effects are largely unknown. The present study showed that DHM reduced cell migration and invasion in a concentration- and time-dependent manner and induced cell apoptosis primarily through upregulation of Cleaved-caspase-3 and the Bax/Bcl-2 ratio in OCs. To further clarify the cancer therapeutic target, we assessed the effect of DHM on the expression of GRASP65, which is overexpressed in human ovarian cancer tissues. DHM activated caspase-3 and decreased GRASP65 expression to promote cell apoptosis, implying that downregulation of GRASP65 was related to DHM-induced cell apoptosis. Additionally, the knockdown of GRASP65 by siRNA resulted in increased apoptosis after DHM treatment, while western blot and flow cytometry analysis demonstrated that overexpression of GRASP65 attenuated DHM-mediated apoptosis. In addition, the JNK/ERK pathway may be involved in DHM-mediated caspase-3 activation and GRASP65 downregulation. Taken together, these findings provide novel evidence of the anti-cancer properties of DHM in OCs, indicating that DHM is a potential therapeutic agent for ovarian cancer through the inhibition of GRASP65 expression and the regulation of JNK/ERK pathway.

Klíčová slova:

Apoptosis – Cancer cell migration – Cancer treatment – Flow cytometry – Ovarian cancer – Small interfering RNAs – Transfection – Golgi apparatus


Zdroje

1. Petrosyan A. Onco-Golgi: Is Fragmentation a Gate to Cancer Progression? Biochem Mol Biol J. 2015,1.

2. Sun JY, Zhu MZ, Wang SW, Miao S, Xie YH, Wang JB, et al. Inhibition of the growth of human gastric carcinoma in vivo and in vitro by swainsonine. Phytomedicine. 2007;14: 353–359. doi: 10.1016/j.phymed.2006.08.003 17097281

3. Rajamahanty S, Alonzo C, Aynehchi S, Choudhury M, Konno S. Growth inhibition of androgen-responsive prostate cancer cells with brefeldin A targeting cell cycle and androgen receptor. J Biomed Sci. 2010;17: 5. doi: 10.1186/1423-0127-17-5 20102617

4. Lin CY, Madsen ML, Yarm FR, Jang YJ, Liu X, Erikson RL, et al. Peripheral Golgi protein GRASP65 is a target of mitotic polo-like kinase (Plk) and Cdc2. Proc Natl Acad Sci. 2000;97: 12589–12594. doi: 10.1073/pnas.220423497 11050165

5. Sutterlin C, Lin C Y, Feng Y, Ferris DK, Erikson RL, Malhotra V. Polo-like kinase is required for the fragmentation of pericentriolar Golgi stacks during mitosis[J]. Proc Natl Acad Sci. 2001;98 (16): 9128–9132. doi: 10.1073/pnas.161283998 11447294

6. Wang Y, Seemann J, Pypaert M, Shorter J, Warren G. A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J. 2003;22: 3279–3290. doi: 10.1093/emboj/cdg317 12839990

7. Wang Y, Satoh A, Warren G. Mapping the functional domains of the Golgi stacking factor GRASP65. J Biol Chem. 2005;280: 4921–4928. doi: 10.1074/jbc.M412407200 15576368

8. Xiang Y, Wang Y. GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking[J]. J Cell Biol. 2010;188(2): 237–251. doi: 10.1083/jcb.200907132 20083603

9. He S, Niu G, Shang J, Deng Y, Wan Z, Zhang C, et al. The oncogenic Golgi phosphoprotein 3 like overexpression is associated with cisplatin resistance in ovarian carcinoma and activating the NF-kappaB signaling pathway. J Exp Clin Canc Res. 2017;36(1):137.

10. Feng Y, He F, Wu H, Huang H, Zhang L, Han X, et al. GOLPH3L is a Novel Prognostic Biomarker for Epithelial Ovarian Cancer. J Cancer. 2015;6: 893–900. doi: 10.7150/jca.11865 26284141

11. Sun J, Yang X, Zhang R, Liu S, Gan X, Xi X, et al. GOLPH3 induces epithelial-mesenchymal transition via Wnt/beta-catenin signaling pathway in epithelial ovarian cancer. Cancer Med. 2017;6: 834–844. doi: 10.1002/cam4.1040 28332316

12. Chang SH, Hong SH, Jiang HL, Minai-Tehrani A, Yu KN, Lee JH, et al. GOLGA2/GM130, cis-Golgi matrix protein, is a novel target of anticancer gene therapy. Mol Ther. 2012;20: 2052–2063. doi: 10.1038/mt.2012.125 22735382

13. Petrosyan A, Holzapfel MS, Muirhead DE, Cheng PW. Restoration of compact Golgi morphology in advanced prostate cancer enhances susceptibility to galectin-1-induced apoptosis by modifying mucin O-glycan synthesis. Mol Cancer Res. 2014;12: 1704–1716. doi: 10.1158/1541-7786.MCR-14-0291-T 25086069

14. Jaattela M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene. 2004; 23(16): 2746–2756. doi: 10.1038/sj.onc.1207513 15077138

15. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. CA- Cancer J Clin. 2018;68: 284–296. doi: 10.3322/caac.21456 29809280

16. Zaid H, Silbermann M, Amash A, Gincel D, Abdel-Sattar E, Sarikahya NB. Medicinal Plants and Natural Active Compounds for Cancer Chemoprevention/Chemotherapy. eCAM. 2017;2017: 7952417. doi: 10.1155/2017/7952417 28491112

17. Greenwell M, Rahman PK. Medicinal Plants: Their Use in Anticancer Treatment. International journal of pharmaceutical sciences and research. 2015;6: 4103–4112. doi: 10.13040/IJPSR.0975-8232.6(10).4103-12 26594645

18. Gullett NP, Ruhul Amin AR, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, et al. Cancer prevention with natural compounds. Semin Oncol. 2010;37: 258–281. doi: 10.1053/j.seminoncol.2010.06.014 20709209

19. Amin AR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol. 2009;27: 2712–2725. doi: 10.1200/JCO.2008.20.6235 19414669

20. Woo HJ, Kang HK, Nguyen TT, Kim GE, Kim YM, Park JS, et al. Synthesis and characterization of ampelopsin glucosides using dextransucrase from Leuconostoc mesenteroides B-1299CB4: glucosylation enhancing physicochemical properties. Enzyme Microb Tech. 2012;51: 311–318.

21. Liu B, Tan X, Liang J, Wu S, Liu J, Zhang Q, et al. A reduction in reactive oxygen species contributes to dihydromyricetin-induced apoptosis in human hepatocellular carcinoma cells. Sci Rep. 2014;4: 7041. doi: 10.1038/srep07041 25391369

22. Ji FJ, Tian XF, Liu XW, Fu LB, Wu YY, Fang XD, et al. Dihydromyricetin induces cell apoptosis via a p53-related pathway in AGS human gastric cancer cells. Genet Mol Res. 2015;14: 15564–15571. doi: 10.4238/2015.December.1.7 26634523

23. Jiang L, Zhang Q, Ren H, Ma S, Lu C, Liu B, et al. Dihydromyricetin Enhances the Chemo-Sensitivity of Nedaplatin via Regulation of the p53/Bcl-2 Pathway in Hepatocellular Carcinoma Cells. PloS one. 2015;10: e0124994. doi: 10.1371/journal.pone.0124994 25915649

24. Xu Y, Wang S, Chan HF, Lu H, Lin Z, He C, et al. Dihydromyricetin Induces Apoptosis and Reverses Drug Resistance in Ovarian Cancer Cells by p53-mediated Downregulation of Survivin. Sci Rep. 2017;7: 46060. doi: 10.1038/srep46060 28436480

25. Li T, You H, Mo X, He W, Tang X, Jiang Z, et al. GOLPH3 Mediated Golgi Stress Response in Modulating N2A Cell Death upon Oxygen-Glucose Deprivation and Reoxygenation Injury. Mol neurobiol. 2016;53: 1377–1385. doi: 10.1007/s12035-014-9083-0 25633094

26. Jiang Z, Hu Z, Zeng L, Lu W, Zhang H, Li T, et al. The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? Free Radic Biol Med. 2011;50(8): 907–917. doi: 10.1016/j.freeradbiomed.2011.01.011 21241794

27. Hicks SW, Machamer CE. Golgi structure in stress sensing and apoptosis. Biochimica et biophysica acta. 2005;1744: 406–414. doi: 10.1016/j.bbamcr.2005.03.002 15979510

28. Mancini M, Machamer CE, Roy S, Nicholson DW, Thornberry NA, Casciola-Rosen LA, et al. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J cell biol. 2000;149: 603–612. doi: 10.1083/jcb.149.3.603 10791974

29. Lane JD, Lucocq J, Pryde J, Barr FA, Woodman PG, Allan VJ, et al. Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J cell biol. 2002;156: 495–509. doi: 10.1083/jcb.200110007 11815631

30. Preisinger C, Korner R, Wind M, Lehmann WD, Kopajtich R, Barr FA. Plk1 docking to GRASP65 phosphorylated by Cdk1 suggests a mechanism for Golgi checkpoint signalling. EMBO J. 2005;24(4): 753–765. doi: 10.1038/sj.emboj.7600569 15678101

31. AlAjmi MF, Rehman MT, Hussain A, Rather GM. Pharmaco-informatics approach for the identification of Polo-like kinase-1 inhibitor from natural sources as anti-cancer agents. Int J biol macromol. 2018;116: 173–181. doi: 10.1016/j.ijbiomac.2018.05.023 29738867

32. Chiu KY, Wu CC, Chia CH, Hsu SL, Tzeng YM. Inhibition of growth, migration and invasion of human bladder cancer cells by antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, and its molecular mechanisms. Cancer lett. 2016;373: 174–184. doi: 10.1016/j.canlet.2015.11.046 26679052

33. Marshall J. Transwell(®) invasion assays. Methods Mol Biol. 2011;769:97–110. doi: 10.1007/978-1-61779-207-6_8 21748672

34. Khan N, Afaq F, Mukhtar H. Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis. 2007;28: 233–239. doi: 10.1093/carcin/bgl243 17151090

35. Vinke FP, Grieve AG, Rabouille C. The multiple facets of the Golgi reassembly stacking proteins. Biochem J. 2011;433: 423–433. doi: 10.1042/BJ20101540 21235525

36. Cheng JP, Betin VM, Weir H, Shelmani GM, Moss DK, Lane JD. Caspase cleavage of the Golgi stacking factor GRASP65 is required for Fas/CD95-mediated apoptosis. Cell death dis. 2010;1: e82. doi: 10.1038/cddis.2010.59 21368855

37. El-Najjar N, Chatila M, Moukadem H, Vuorela H, Ocker M, Gandesiri M, et al. Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis. 2010;15: 183–195. doi: 10.1007/s10495-009-0421-z 19882352

38. Son Y, Kim S, Chung HT, Pae HO. Reactive oxygen species in the activation of MAP kinases. Method enzymol. 2013;528: 27–48.

39. Veenendaal T, Jarvela T, Grieve AG, van Es JH, Linstedt AD, Rabouille C. GRASP65 controls the cis Golgi integrity in vivo. Biol open. 2014;3: 431–443. doi: 10.1242/bio.20147757 24795147

40. Ahat E, Li J, Wang Y. New Insights Into the Golgi Stacking Proteins. Front Cell Dev Biol. 2019;7: 131. doi: 10.3389/fcell.2019.00131 31380369

41. Walker A, Ward C, Sheldrake TA, Dransfield I, Rossi AG, Pryde JG, et al. Golgi fragmentation during Fas-mediated apoptosis is associated with the rapid loss of GM130. Biochem bioph res co. 2004;316: 6–11.

42. Romagnolo DF, Selmin OI. Flavonoids and cancer prevention: a review of the evidence. J nutr. 2012;31: 206–238.

43. Fleischer A, Ghadiri A, Dessauge F, Duhamel M, Rebollo MP, Alvarez-Franco F, et al. Modulating apoptosis as a target for effective therapy. Mol Immunol. 2006;43: 1065–1079. doi: 10.1016/j.molimm.2005.07.013 16099509

44. Goldsworthy TL, Conolly RB, Fransson-Steen R. Apoptosis and cancer risk assessment. Mutat res. 1996;365: 71–90. doi: 10.1016/s0165-1110(96)90013-5 8898990

45. Xi G, Hu X, Wu B, Jiang H, Young CY, Pang Y, et al. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer lett. 2011;307: 141–148. doi: 10.1016/j.canlet.2011.03.026 21511395

46. Nakagomi S, Barsoum MJ, Bossy-Wetzel E, Sutterlin C, Malhotra V, Lipton SA. A Golgi fragmentation pathway in neurodegeneration. Neurobiol dis. 2008;29: 221–231. doi: 10.1016/j.nbd.2007.08.015 17964175

47. Tang D, Yuan H, Wang Y. The role of GRASP65 in Golgi cisternal stacking and cell cycle progression. Traffic. 2010;11(6): 827–842. doi: 10.1111/j.1600-0854.2010.01055.x 20214750

48. Ahat E, Xiang Y, Zhang X, Bekier II, Wang Y. GRASP depletion-mediated Golgi destruction decreases cell adhesion and migration via the reduction of alpha5beta1 integrin. Mol Biol Cell. 2019;30(6): 766–777. doi: 10.1091/mbc.E18-07-0462 30649990

49. Sutterlin C, Polishchuk R, Pecot M, Malhotra V. The Golgi-associated protein GRASP65 regulates spindle dynamics and is essential for cell division. Mol Biol Cell. 2005;16(7): 3211–3222. doi: 10.1091/mbc.E04-12-1065 15888544

50. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem. 2002;277(33): 29803–29809. doi: 10.1074/jbc.M204185200 12065594

51. Li T, You H, Zhang J, Mo X, He W, Chen Y, et al. Study of GOLPH3: a potential stress-inducible protein from Golgi apparatus. Mol Neurobiol. 2014;49(3): 1449–1459. doi: 10.1007/s12035-013-8624-2 24395131

52. Cao Q, Mao ZD, Shi YJ, Chen Y, Sun Y, Zhang Q, et al. MicroRNA-7 inhibits cell proliferation, migration and invasion in human non-small cell lung cancer cells by targeting FAK through ERK/MAPK signaling pathway. Oncotarget. 2016;7: 77468–77481. doi: 10.18632/oncotarget.12684 27764812

53. Zhang S, Qi Y, Xu Y, Han X, Peng J, Liu K, et al. Protective effect of flavonoid-rich extract from Rosa laevigata Michx on cerebral ischemia-reperfusion injury through suppression of apoptosis and inflammation. Neurochem int. 2013;63: 522–532. doi: 10.1016/j.neuint.2013.08.008 24012531

54. Liu J, Lin A. Role of JNK activation in apoptosis: a double-edged sword. Cell res. 2005;15: 36–42. doi: 10.1038/sj.cr.7290262 15686625

55. Bisel B, Wang Y, Wei JH, Xiang Y, Tang D, Miron-Mendoza M, et al. ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65. J cell biol. 2008;182: 837–843. doi: 10.1083/jcb.200805045 18762583

56. Yao Z, Seger R. The ERK signaling cascade—views from different subcellular compartments. BioFactors (Oxford, England). 2009;35: 407–416.

57. Cervigni RI, Bonavita R, Barretta ML, Spano D, Ayala I, Nakamura N, et al. JNK2 controls fragmentation of the Golgi complex and the G2/M transition through phosphorylation of GRASP65. J cell sci. 2015;128: 2249–2260. doi: 10.1242/jcs.164871 25948586

58. Yoshimura S, Yoshioka K, Barr FA, Lowe M, Nakayama K, Ohkuma S, et al. Convergence of cell cycle regulation and growth factor signals on GRASP65. J biol chem. 2005;280: 23048–23056. doi: 10.1074/jbc.M502442200 15834132

59. Wen XR, Tang M, Qi DS, Huang XJ, Liu HZ, Zhang F, et al. Butylphthalide Suppresses Neuronal Cells Apoptosis and Inhibits JNK-Caspase3 Signaling Pathway After Brain Ischemia /Reperfusion in Rats. Cell mol neurobiol. 2016;36: 1087–1095. doi: 10.1007/s10571-015-0302-7 27015680

60. Zhu BL, Xie CL, Hu NN, Zhu XB, Liu CF. Inhibiting of GRASP65 Phosphorylation by DL-3-N-Butylphthalide Protects against Cerebral Ischemia-Reperfusion Injury via ERK Signaling. Behav Neurol. 2018;2018: 5701719. doi: 10.1155/2018/5701719 30154935

61. Lin B, Yu H, Lin YT, Cai C, Lu HQ, Zhu XB. Suppression of GRASP65 phosphorylation by tetrahydrocurcumin protects against cerebral ischemia/reperfusion injury via ERK signaling. Mol Med Rep. 2016;14(5): 4775–4780. doi: 10.3892/mmr.2016.5816 27748926


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#