Non-invasive in vivo imaging of UCP1 expression in live mice via near-infrared fluorescent protein iRFP720


Autoři: Aya Fukuda aff001;  Shiho Honda aff001;  Norie Fujioka aff001;  Yuya Sekiguchi aff001;  Seiya Mizuno aff002;  Yoshihiro Miwa aff003;  Fumihiro Sugiyama aff002;  Yohei Hayashi aff001;  Ken Nishimura aff001;  Koji Hisatake aff001
Působiště autorů: Laboratory of Gene Regulation, University of Tsukuba, Tsukuba, Ibaraki, Japan aff001;  Laboratory of Animal Science, University of Tsukuba, Tsukuba, Ibaraki, Japan aff002;  Laboratory of Anatomy and Embryology, University of Tsukuba, Tsukuba, Ibaraki, Japan aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225213

Souhrn

Uncoupling protein 1 (UCP1) is a mitochondrial protein that is expressed in both brown and beige adipocytes. UCP1 uncouples the mitochondrial electron transport chain from ATP synthesis to produce heat via non-shivering thermogenesis. Due to their ability to dissipate energy as heat and ameliorate metabolic disorders, UCP1-expressing adipocytes are considered as a potential target for anti-obesity treatment. To monitor the expression of UCP1 in live mice in a non-invasive manner, we generated the Ucp1-iRFP720 knock-in (Ucp1-iRFP720 KI) mice, in which the gene encoding a near-infrared fluorescent protein iRFP720 is inserted into the Ucp1 gene locus. Using the heterozygous Ucp1-iRFP720 KI mice, we observed robust iRFP fluorescence in the interscapular region where brown adipose tissue is located. Moreover, the iRFP fluorescence was clearly observable in inguinal white adipose tissues in live mice administered with β3-adrenergic receptor agonist CL316,243. We also found that the homozygous Ucp1-iRFP720 KI mice, which are deficient in UCP1, displayed prominent iRFP fluorescence in the inguinal regions at the standard housing temperature. Consistent with this, the mice exhibited expanded populations of beige-like adipocytes in inguinal white adipose tissue, in which the Ucp1 promoter was dramatically activated. Thus, the Ucp1-iRFP720 KI mice provide a convenient model for non-invasive in vivo imaging of UCP1 expression in both brown and beige adipocytes in live mice.

Klíčová slova:

Adipocytes – Fluorescence imaging – Guide RNA – In vivo imaging – Mammalian genomics – Mouse models – Polymerase chain reaction – Thermogenesis


Zdroje

1. Kozak LP, Anunciado-Koza R. UCP1: Its involvement and utility in obesity. International Journal of Obesity. 2008. doi: 10.1038/ijo.2008.236 19136989

2. Ikeda K, Maretich P, Kajimura S. The Common and Distinct Features of Brown and Beige Adipocytes. Trends in Endocrinology and Metabolism. 2018. doi: 10.1016/j.tem.2018.01.001 29366777

3. Cypess AM, Lehman S, Williams G, Tal I, Goldfine AB, Kuo FC, et al. Identification and Importance of Brown Adipose Tissue in Adult Humans A BS TR AC T. N Engl J Med. 2009. http://dx.doi.org/10.1056/NEJMoa0810780

4. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, Bouvy ND, et al. Cold-Activated Brown Adipose Tissue in Healthy Men. N Engl J Med. 2009; doi: 10.1056/nejmoa0808718 19357405

5. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional Brown Adipose Tissue in Healthy Adults. N Engl J Med. 2009; doi: 10.1056/nejmoa0808949 19357407

6. Lee P, Swarbrick MM, Zhao JT, Ho KKY. Inducible brown adipogenesis of supraclavicular fat in adult humans. Endocrinology. 2011; doi: 10.1210/en.2011-1349 21791556

7. Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med. 2013; doi: 10.1038/nm.3112 23603815

8. Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homøe P, Loft A, et al. A classical brown adipose tissue mrna signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 2013; doi: 10.1016/j.cmet.2013.04.011 23663743

9. Shinoda K, Luijten IHN, Hasegawa Y, Hong H, Sonne SB, Kim M, et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med. 2015; doi: 10.1038/nm.3819 25774848

10. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity. Diabetes. 2009; doi: 10.2337/db09-0530 19401428

11. Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, et al. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity. 2011; doi: 10.1038/oby.2011.125 21566561

12. Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes. 2014; doi: 10.1038/ijo.2013.206 24213309

13. Chondronikola M, Volpi E, Børsheim E, Porter C, Annamalai P, Enerbäck S, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes. 2014; doi: 10.2337/db14-0746 25056438

14. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013; doi: 10.1172/JCI67803 23867622

15. Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 2011; doi: 10.1016/j.cmet.2011.06.012 21803297

16. Hanssen MJW, Hoeks J, Brans B, Van Der Lans AAJJ, Schaart G, Van Den Driessche JJ, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med. 2015; doi: 10.1038/nm.3891 26147760

17. Townsend K, Tseng Y-H. Brown adipose tissue: Recent insights into development, metabolic function and therapeutic potential. Adipocyte. 2012; doi: 10.4161/adip.18951 23700507

18. Lshibashi J, Seale P. Beige can be slimming. Science. 2010. doi: 10.1126/science.1190816

19. Kiefer FW. The significance of beige and brown fat in humans. Endocr Connect. 2017; doi: 10.1530/ec-17-0037

20. Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014; doi: 10.1016/j.cell.2013.12.021 24439384

21. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010; doi: 10.1074/jbc.M109.053942 20028987

22. Contreras GA, Lee Y-H, Mottillo EP, Granneman JG. Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation. Am J Physiol Metab. 2014; doi: 10.1152/ajpendo.00033.2014 25184993

23. Aldiss P, Betts J, Sale C, Pope M, Budge H, Symonds ME. Exercise-induced ‘browning’ of adipose tissues. Metabolism: Clinical and Experimental. 2018. doi: 10.1016/j.metabol.2017.11.009 29155135

24. Shabalina IG, Petrovic N, deJong JMA, Kalinovich A V., Cannon B, Nedergaard J. UCP1 in Brite/Beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 2013; doi: 10.1016/j.celrep.2013.10.044 24290753

25. Nyman E, Bartesaghi S, Melin Rydfalk R, Eng S, Pollard C, Gennemark P, et al. Systems biology reveals uncoupling beyond UCP1 in human white fat-derived beige adipocytes. npj Syst Biol Appl. 2017; doi: 10.1038/s41540-017-0027-y 28983409

26. Granneman JG, Burnazi M, Zhu Z, Schwamb LA. White adipose tissue contributes to UCP1-independent thermogenesis. Am J Physiol Metab. 2003; doi: 10.1152/ajpendo.00197.2003 12954594

27. Ukropec J, Anunciado RP, Ravussin Y, Hulver MW, Kozak LP. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice. J Biol Chem. 2006; doi: 10.1074/jbc.M606114200 16914547

28. Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, et al. A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat. Cell. 2015; doi: 10.1016/j.cell.2015.09.035 26496606

29. Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, et al. Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity. Cell Metab. 2017; doi: 10.1016/j.cmet.2017.08.009 28844881

30. Bertholet AM, Kazak L, Chouchani ET, Bogaczyńska MG, Paranjpe I, Wainwright GL, et al. Mitochondrial Patch Clamp of Beige Adipocytes Reveals UCP1-Positive and UCP1-Negative Cells Both Exhibiting Futile Creatine Cycling. Cell Metab. 2017; doi: 10.1016/j.cmet.2017.03.002 28380374

31. Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, et al. UCP1-independent signaling involving SERCA2bmediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med. 2017; doi: 10.1038/nm.4429 29131158

32. Filonov GS, Piatkevich KD, Ting LM, Zhang J, Kim K, Verkhusha V V. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol. 2011; doi: 10.1038/nbt.1918 21765402

33. Shemetov AA, Oliinyk OS, Verkhusha V V. How to Increase Brightness of Near-Infrared Fluorescent Proteins in Mammalian Cells. Cell Chem Biol. 2017; doi: 10.1016/j.chembiol.2017.05.018 28602760

34. Shcherbakova DM, Baloban M, Verkhusha V V. Near-infrared fluorescent proteins engineered from bacterial phytochromes. Current Opinion in Chemical Biology. 2015. doi: 10.1016/j.cbpa.2015.06.005 26115447

35. Shcherbakova DM, Stepanenko O V., Turoverov KK, Verkhusha V V. Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales. Trends in Biotechnology. 2018. doi: 10.1016/j.tibtech.2018.06.011 30041828

36. Naito Y, Hino K, Bono H, Ui-Tei K. CRISPRdirect: Software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics. 2015; doi: 10.1093/bioinformatics/btu743 25414360

37. Arsenijevic T, Grégoire F, Delforge V, Delporte C, Perret J. Murine 3T3-L1 Adipocyte cell differentiation model: Validated reference genes for qPCR gene expression analysis. PLoS One. 2012; doi: 10.1371/journal.pone.0037517 22629413

38. Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep. 2013; doi: 10.1038/srep03355 24284873

39. Huang MTF, Gorman CM. Intervening sequences increase efficiency of RNA 3’ processing and accumulation of cytoplasmic RNA. Nucleic Acids Res. 1990; doi: 10.1093/nar/18.4.937 1690394

40. Palmiter RD, Sandgren EP, Avarbock MR, Brinster RL. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci U S A. 1991; doi: 10.1073/pnas.88.2.478 1988947

41. Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997; doi: 10.1038/387090a0 9139827

42. Liu X, Rossmeisl M, McClaine J, Kozak LP. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J Clin Invest. 2003; doi: 10.1172/JCI200315737

43. Keipert S, Kutschke M, Lamp D, Brachthäuser L, Neff F, Meyer CW, et al. Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion. Mol Metab. 2015; doi: 10.1016/j.molmet.2015.04.006 26137441

44. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 Ablation Induces Obesity and Abolishes Diet-Induced Thermogenesis in Mice Exempt from Thermal Stress by Living at Thermoneutrality. Cell Metab. 2009; doi: 10.1016/j.cmet.2008.12.014 19187776

45. Maloney SK, Fuller A, Mitchell D, Gordon C, Overton JM. Translating Animal Model Research: Does It Matter That Our Rodents Are Cold? Physiology. 2014; doi: 10.1152/physiol.00029.2014 25362635

46. Galmozzi A, Sonne SB, Altshuler-Keylin S, Hasegawa Y, Shinoda K, Luijten IHN, et al. ThermoMouse: An In Vivo Model to Identify Modulators of UCP1 Expression in Brown Adipose Tissue. Cell Rep. 2014; doi: 10.1016/j.celrep.2014.10.066 25466254

47. Mao L, Nie B, Nie T, Hui X, Gao X, Lin X, et al. Visualization and quantification of browning using a Ucp1-2A-luciferase knock-in mouse model. Diabetes. 2017; doi: 10.2337/db16-0343 28108609

48. Wang H, Willershäuser M, Karlas A, Gorpas D, Reber J, Ntziachristos V, et al. A dual Ucp1 reporter mouse model for imaging and quantitation of brown and brite fat recruitment. Mol Metab. 2019; doi: 10.1016/j.molmet.2018.11.009 30580967

49. Close DM, Xu T, Sayler GS, Ripp S. In vivo bioluminescent imaging (BLI): Noninvasive visualization and interrogation of biological processes in living animals. Sensors. 2011. doi: 10.3390/s110100180 22346573

50. Inoue Y, Kiryu S, Izawa K, Watanabe M, Tojo A, Ohtomo K. Comparison of subcutaneous and intraperitoneal injection of d-luciferin for in vivo bioluminescence imaging. Eur J Nucl Med Mol Imaging. 2009; doi: 10.1007/s00259-008-1022-8 19096841

51. Liu Z, Chen O, Wall JBJ, Zheng M, Zhou Y, Wang L, et al. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep. 2017; doi: 10.1038/s41598-017-02460-2 28526819

52. Croce AC, Ferrigno A, Santin G, Vairetti M, Bottiroli G. Bilirubin: An autofluorescence bile biomarker for liver functionality monitoring. J Biophotonics. 2014; doi: 10.1002/jbio.201300039 23616471

53. Merrick D, Sakers A, Irgebay Z, Okada C, Calvert C, Morley MP, et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science (80-). 2019; doi: 10.1126/science.aav2501 31023895

54. Hagberg CE, Li Q, Kutschke M, Bhowmick D, Kiss E, Shabalina IG, et al. Flow Cytometry of Mouse and Human Adipocytes for the Analysis of Browning and Cellular Heterogeneity. Cell Rep. 2018; doi: 10.1016/j.celrep.2018.08.006 30184507


Článek vyšel v časopise

PLOS One


2019 Číslo 11