Nodosilinea signiensis sp. nov. (Leptolyngbyaceae, Synechococcales), a new terrestrial cyanobacterium isolated from mats collected on Signy Island, South Orkney Islands, Antarctica


Autoři: Ranina Radzi aff001;  Narongrit Muangmai aff002;  Paul Broady aff003;  Wan Maznah Wan Omar aff001;  Sebastien Lavoue aff001;  Peter Convey aff004;  Faradina Merican aff001
Působiště autorů: School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia aff001;  Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand aff002;  School of Biological Sciences, University of Canterbury, Christchurch, New Zealand aff003;  British Antarctic Survey, Cambridge, United Kingdom aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224395

Souhrn

Terrestrial cyanobacteria are very diverse and widely distributed in Antarctica, where they can form macroscopically visible biofilms on the surfaces of soils and rocks, and on benthic surfaces in fresh waters. We recently isolated several terrestrial cyanobacteria from soils collected on Signy Island, South Orkney Islands, Antarctica. Among them, we found a novel species of Nodosilinea, named here as Nodosilinea signiensis sp. nov. This new species is morphologically and genetically distinct from other described species. Morphological examination indicated that the new species is differentiated from others in the genus by cell size, cell shape, filament attenuation, sheath morphology and granulation. 16S rDNA phylogenetic analyses clearly confirmed that N. signiensis belongs to the genus Nodosilinea, but that it is genetically distinct from other known species of Nodosilinea. The D1–D1´ helix of the 16S–23S ITS region of the new species was also different from previously described Nodosilinea species. This is the first detailed characterization of a member of the genus Nodosilinea from Antarctica as well as being a newly described species.

Klíčová slova:

Antarctica – Islands – Phylogenetic analysis – Phylogenetics – Taxonomy – Transmission electron microscopy – Trichomes – Cyanobacteria


Zdroje

1. Castenholz RW, Waterbury JB. Taxa of the cyanobacteria. Bergey’s Manual of Systematic Bacteriology. 1989; 3: 1727–1728.

2. Komárek J. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. European Journal of Phycology. 2016; 51: 346–353.

3. Komárek J, Kaštovský J, Mareš J, Johansen JR. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) using a polyphasic approach. Preslia. 2014; 86: 295–335.

4. Mareš J. Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system. Hydrobiologia. 2018; 811: 19–34.

5. Komárek J. Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia. 2018; 811:7–17.

6. Abed RM, Garcia-Pichel F, Hernández-Mariné M. Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of Halomicronema excentricum gen. nov., sp. nov. Archives of Microbiology. 2002; 177: 361–70. doi: 10.1007/s00203-001-0390-2 11976745

7. Turicchia S, Ventura S, Komárková J, Komárek J. Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 2. Diversity of oscillatorialean genera. Nova Hedwigia. 2009; 89: 165–200.

8. Perkerson RB III, Johansen JR, Kovácik L, Brand J, Kaštovský J, Casamatta DA. A unique Pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. Journal of Phycology. 2011; 47: 1397–1412. doi: 10.1111/j.1529-8817.2011.01077.x 27020364

9. Taton A, Wilmotte A, Šmarda J, Elster J, Komarek J. Plectolyngbya hodgsonii: a novel filamentous cyanobacterium from Antarctic lakes. Polar Biology. 2011; 34: 181–191.

10. Dadheech PK, Mahmoud H, Kotut K, Krienitz L. Haloleptolyngbya alcalis gen. et sp. nov., a new filamentous cyanobacterium from the soda lake Nakuru, Kenya. Hydrobiologia. 2012; 691: 269–283.

11. Zammit G, Billi D, Albertano P. The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. sp. nov.: a cytomorphological and molecular description. European Journal of Phycology. 2012; 47: 341–354.

12. Dvořák PE, Hindák FR, Hašler PE, Hindakova A, Poulíčková AL. Morphological and molecular studies of Neosynechococcus sphagnicola, gen. et sp. nov. (Cyanobacteria, Synechococcales). Phytotaxa. 2014; 170: 24–34.

13. Vaz MG, Genuario DB, Andreote AP, Malone CF, Sant’Anna CL, Barbiero L, Fiore MF. Pantanalinema gen. nov. and Alkalinema gen. nov.: novel pseudanabaenacean genera (Cyanobacteria) isolated from saline–alkaline lakes. International Journal of Systematic and Evolutionary Microbiology. 2015; 65: 298–308. doi: 10.1099/ijs.0.070110-0 25351877

14. Song G, Jiang Y, Li R. Scytolyngbya timoleontis, gen. et sp. nov. (Leptolyngbyaceae, Cyanobacteria): a novel false branching Cyanobacteria from China. Phytotaxa, 2015; 224: 72–84.

15. Dvořák P, Hašler P, Pitelková P, Tabakova P, Casamatta DA, Poulíčková A. A new cyanobacterium from the Everglades, Florida–Chamaethrix gen. nov. Fottea. 2017; 17: 269–276.

16. Li X, Li R. Limnolyngbya circumcreta gen. & comb. nov. (Synechococcales, Cyanobacteria) with three geographical (provincial) genotypes in China. Phycologia. 2016; 55: 478–491.

17. Sciuto K, Moro I. Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S–23S ITS region. Molecular Phylogenetics and Evolution. 2016; 105: 15–35. doi: 10.1016/j.ympev.2016.08.010 27546720

18. Miscoe LH, Johansen JR, Kociolek JP, Lowe RL, Vaccarino MA, Pietrasiak N, Sherwood AR. The diatom flora and cyanobacteria from caves on Kauai, Hawaii. Acta Botanica Hungarica. 2016; 58: 3–4.

19. Dvořák P, Hašler P, Pitelková P, Tabáková P, Casamatta DA, Poulíčková A. A new cyanobacterium from the Everglades, Florida—Chamaethrix gen. nov. Fottea, Olomouc. 2017; 17: 269–76.

20. Sciuto K, Moschin E, Moro I (2017). Cryptic cyanobacterial diversity in the Giant Cave (Trieste, Italy): the new genus Timaviella (Leptolyngbyaceae). Cryptogamie, Algologie. 2017; 38: 285–324.

21. Jahodářová E, Dvořák P, Hašler P, Poulíčková A. Revealing hidden diversity among tropical cyanobacteria: the new genus Onodrimia (Synechococcales, Cyanobacteria) described using the polyphasic approach. Phytotaxa. 2017; 326: 28–40.

22. Brito A, Ramos V, Mota R, Lima S, Santos A, Vieira J, Tamagnini P. Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Molecular Phylogenetics and Evolution. 2017; 111: 18–34. doi: 10.1016/j.ympev.2017.03.006 28279808

23. Zimba PV, Huang IS, Foley JE, Linton EW. Identification of a new‐to‐science cyanobacterium, Toxifilum mysidocida gen. nov. & sp. nov. (Cyanobacteria, Cyanophyceae). Journal of Phycology. 2017; 53: 188–197. doi: 10.1111/jpy.12490 27809340

24. Li Z, Brand J. Leptolyngbya nodulosa sp. nov. (Oscillatoriaceae), a subtropical marine cyanobacterium that produces a unique multicellular structure. Phycologia. 2007; 46: 396–401.

25. Vazquez-Martinez J, Gutierrez-Villagomez JM, Fonseca-Garcia C, Ramirez-Chavez E, Mondragón-Sánchez M L, Partida-Martinez L, Molina-Torres J. Nodosilinea chupicuarensis sp. nov. (Leptolyngbyaceae, Synechococcales) a subaerial cyanobacterium isolated from a stone monument in central Mexico. Phytotaxa. 2018; 334: 167–182.

26. Anagnostidis K, Komarek J. Cyanoprokariota. Teil 2: Oscillatoriales. SuBwasserflora von Mitteleuropa; Band 19/2 Spektrum Akademischer Verlag Heidelberg. 2005.

27. Costa MS, Rego A, Ramos V, Afonso TB, Freitas S, Preto M, Lopes V, Vasconcelos V, Magalhaes C, Leao PN. The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria. Scientific Reports. 2016; 6: 23436. doi: 10.1038/srep23436 26996104

28. Heidari F, Hauer T, Zima J, Riahi H. New simple trichal cyanobacterial taxa isolated from radioactive thermal springs. Fottea. 2018; 18:137–49.

29. Kongisser RA. On the Methods of Studying Phytoplankton [In Russian]. Trav. Soc. Nat. Leningrad. 1925.

30. Wynn-Williams DD. Television image analysis of microbial communities in Antarctic fellfields. Polarforschung. 1988; 58: 239–249.

31. Gaydon DS, Probert ME, Buresh RJ, Meinke H, Timsina J. Modelling the role of algae in rice crop nutrition and soil organic carbon maintenance. European Journal of Agronomy. 2012; 39: 35–43.

32. Friedmann EI. Endolithic microorganisms in the Antarctic cold desert. Science. 1982; 215: 1045–53. doi: 10.1126/science.215.4536.1045 17771821

33. Quesada A, Vincent WF (2012). Cyanobacteria in the cryosphere: snow, ice and extreme cold. In Ecology of cyanobacteria II. Dordrecht: Springer; 2012. pp. 387–399.

34. Broady PA. The terrestrial algae of Signy Island, South Orkney Islands. British Antarctic Survey; 1979.

35. Friedmann EI, Hua M, Ocampo-Friedmann R. Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung. 1988; 58: 251–259. 11538357

36. Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA. Lanoil BD, Pinckney JL. Perennial Antarctic lake ice: an oasis for life in a polar desert. Science. 1998; 280: 2095–2098. doi: 10.1126/science.280.5372.2095 9641910

37. Mataloni G, Tell G, Wynn-Williams DD. Structure and diversity of soil algal communities from Cierva Point (Antarctic Peninsula). Polar Biology. 2000; 23: 205–211.

38. Cavacini P. Soil algae from northern Victoria Land (Antarctica). Polar Bioscience 2001; 14: 45–60.

39. Mueller DR, Pollard WH. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biology. 2004; 27: 66–74.

40. Brinkmann M, Pearce DA, Convey P, Ott S. The cyanobacterial community of polygon soils at an inland Antarctic nunatak. Polar Biology. 2007; 30: 1505–1511.

41. Vishnivetskaya TA. Viable cyanobacteria and green algae from the permafrost darkness. In Permafrost soils. Berlin, Heidelberg: Springer; 2009. pp. 73–84.

42. Stoyanov P, Moten D, Mladenov R, Dzhambazov B, Teneva I. Phylogenetic relationships of some filamentous cyanoprokaryotic species. Evolutionary Bioinformatics. 2014; EBO-S13748.

43. Jancusova M, Kovacik L, Pereira AB, Dusinsky R, Wilmotte A. Polyphasic characterization of 10 selected ecologically relevant filamentous cyanobacterial strains from the South Shetland Islands, Maritime Antarctica. FEMS Microbiology Ecology. 2016; 92: fiw100.Stoyanov P, Moten D, Mladenov R, Dzhambazov B, Teneva I. Phylogenetic relationships of some filamentous cyanoprokaryotic species. Evolutionary Bioinformatics. 2014; EBO-S13748.

44. Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology. 2003; 69: 5157–69. doi: 10.1128/AEM.69.9.5157-5169.2003 12957897

45. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology. 1979; 111: 1–61.

46. Bolch CJ, Blackburn SI. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. Journal of Applied Phycology. 1996; 8: 5–13.

47. McDowell EM, Trump BF. Histologic fixatives suitable for diagnostic light and electron microscopy. Archives of pathology & laboratory medicine. 1976; 100: 405–414.

48. Spurr AR. A low-viscosity epoxy resin-embedding medium for electron microscopy. Journal of ultrastructure research. 1969; 26: 31–43. doi: 10.1016/s0022-5320(69)90033-1 4887011

49. Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of cell biology. 1963; 17: 208. doi: 10.1083/jcb.17.1.208 13986422

50. Boyer SL, Flechtner VR, Johansen JR. Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Molecular Biology and Evolution. 2001; 18: 1057–1069. doi: 10.1093/oxfordjournals.molbev.a003877 11371594

51. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research. 2011; 40: D109–D114. doi: 10.1093/nar/gkr988 22080510

52. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22: 2688–2690. doi: 10.1093/bioinformatics/btl446 16928733

53. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003; 19: 1572–1574. doi: 10.1093/bioinformatics/btg180 12912839

54. Rambaut A. FigTree, version 1.3. 1. Computer program distributed by the author; 2009, http://treebioedacuk/software/figtree.

55. Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research. 2016; 44: W54–7. doi: 10.1093/nar/gkw413 27174935

56. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Evolutionary Microbiology. 1994; 44: 846–849.

57. Stackebrandt E. Taxonomic parameters revisited tarnished gold standards. Microbiology Today. 2006; 33: 152–155.

58. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Rosselló-Móra R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology. 2014; 12: 635. doi: 10.1038/nrmicro3330 25118885

59. Komárek J. Phenotype diversity of the cyanobacterial genus Leptolyngbya in the maritime Antarctic. Pol Polar Res. 2007; 28(3): 211–31.

60. Řeháková K, Johansen JR, Casamatta DA, Xuesong L, Vincent J. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia. 2007; 46: 481–502.

61. Johansen JR, Kovacik L, Casamatta DA, Iková KF, Kaštovský J. Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia. 2011; 92: 283–302.

62. Vaccarino MA, Johansen JR. Brasilonema angustatum sp. nov (Nostocales), a new filamentous cyanobacterial species fom the Hawaiian Islands. Journal of Phycology. 2012; 48: 1178–1186. doi: 10.1111/j.1529-8817.2012.01203.x 27011277

63. Osorio-Santos K, Pietrasiak N, Bohunická M, Miscoe LH, Kováčik L, Martin MP, Johansen JR. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. European Journal of Phycology. 2014; 49: 450–470.


Článek vyšel v časopise

PLOS One


2019 Číslo 11