Improved chemotherapy modeling with RAG-based immune deficient mice

Autoři: Mark Wunderlich aff001;  Nicole Manning aff001;  Christina Sexton aff001;  Anthony Sabulski aff002;  Luke Byerly aff002;  Eric O’Brien aff002;  John P. Perentesis aff002;  Benjamin Mizukawa aff002;  James C. Mulloy aff001
Působiště autorů: Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America aff001;  Division of Hematology and Oncology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225532


We have previously characterized an acute myeloid leukemia (AML) chemotherapy model for SCID-based immune deficient mice (NSG and NSGS), consisting of 5 days of cytarabine (AraC) and 3 days of anthracycline (doxorubicin), to simulate the standard 7+3 chemotherapy regimen many AML patients receive. While this model remains tractable, there are several limitations, presumably due to the constitutional Pkrdcscid (SCID, severe combined immune deficiency) mutation which affects DNA repair in all tissues of the mouse. These include the inability to combine preconditioning with subsequent chemotherapy, the inability to repeat chemotherapy cycles, and the increased sensitivity of the host hematopoietic cells to genotoxic stress. Here we attempt to address these drawbacks through the use of alternative strains with RAG-based immune deficiency (NRG and NRGS). We find that RAG-based mice tolerate a busulfan preconditioning regimen in combination with either AML or 4-drug acute lymphoid leukemia (ALL) chemotherapy, expanding the number of samples that can be studied. RAG-based mice also tolerate multiple cycles of therapy, thereby allowing for more aggressive, realistic modeling. Furthermore, standard AML therapy in RAG mice was 3.8-fold more specific for AML cells, relative to SCID mice, demonstrating an improved therapeutic window for genotoxic agents. We conclude that RAG-based mice should be the new standard for preclinical evaluation of therapeutic strategies involving genotoxic agents.

Klíčová slova:

Acute myeloid leukemia – Cancer chemotherapy – Cancer treatment – Chemotherapy – Leukemias – Mouse models – Toxicity – High-dose chemotherapy


1. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. Journal of immunology (Baltimore, Md: 1950). 2005;174(10):6477–89. Epub 2005/05/10. doi: 10.4049/jimmunol.174.10.6477 15879151.

2. Agliano A, Martin-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G, et al. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rgamma null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. International journal of cancer. 2008;123(9):2222–7. Epub 2008/08/09. doi: 10.1002/ijc.23772 18688847.

3. Wunderlich M, Chou FS, Link KA, Mizukawa B, Perry RL, Carroll M, et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia. 2010;24(10):1785–8. Epub 2010/08/06. doi: 10.1038/leu.2010.158 20686503.

4. Krevvata M, Shan X, Zhou C, Dos Santos C, Habineza Ndikuyeze G, Secreto A, et al. Cytokines increase engraftment of human acute myeloid leukemia cells in immunocompromised mice but not engraftment of human myelodysplastic syndrome cells. Haematologica. 2018;103(6):959–71. Epub 2018/03/17. doi: 10.3324/haematol.2017.183202 29545344

5. Barve A, Casson L, Krem M, Wunderlich M, Mulloy JC, Beverly LJ. Comparative utility of NRG and NRGS mice for the study of normal hematopoiesis, leukemogenesis, and therapeutic response. Experimental hematology. 2018;67:18–31. Epub 2018/08/21. doi: 10.1016/j.exphem.2018.08.004 30125602

6. Wunderlich M, Mizukawa B, Chou FS, Sexton C, Shrestha M, Saunthararajah Y, et al. AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. Blood. 2013;121(12):e90–7. Epub 2013/01/26. doi: 10.1182/blood-2012-10-464677 23349390

7. Izumchenko E, Paz K, Ciznadija D, Sloma I, Katz A, Vasquez-Dunddel D, et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Annals of oncology: official journal of the European Society for Medical Oncology. 2017;28(10):2595–605. Epub 2017/09/26. doi: 10.1093/annonc/mdx416 28945830.

8. Zhang CC, Yan Z, Pascual B, Jackson-Fisher A, Huang DS, Zong Q, et al. Gemtuzumab Ozogamicin (GO) Inclusion to Induction Chemotherapy Eliminates Leukemic Initiating Cells and Significantly Improves Survival in Mouse Models of Acute Myeloid Leukemia. Neoplasia (New York, NY). 2018;20(1):1–11. Epub 2017/11/25. doi: 10.1016/j.neo.2017.10.008 29172076

9. Sperlazza J, Rahmani M, Beckta J, Aust M, Hawkins E, Wang SZ, et al. Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation. Blood. 2015;126(12):1462–72. Epub 2015/08/13. doi: 10.1182/blood-2015-03-631606 26265695

10. Sivagnanalingam U, Balys M, Eberhardt A, Wang N, Myers JR, Ashton JM, et al. Residual Disease in a Novel Xenograft Model of RUNX1-Mutated, Cytogenetically Normal Acute Myeloid Leukemia. PLoS One. 2015;10(7):e0132375. Epub 2015/07/16. doi: 10.1371/journal.pone.0132375 26177509

11. Lee EM, Yee D, Busfield SJ, McManus JF, Cummings N, Vairo G, et al. Efficacy of an Fc-modified anti-CD123 antibody (CSL362) combined with chemotherapy in xenograft models of acute myelogenous leukemia in immunodeficient mice. Haematologica. 2015;100(7):914–26. Epub 2015/07/02. doi: 10.3324/haematol.2014.113092 26130514

12. Velu CS, Chaubey A, Phelan JD, Horman SR, Wunderlich M, Guzman ML, et al. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. The Journal of clinical investigation. 2014;124(1):222–36. Epub 2013/12/18. doi: 10.1172/JCI66005 24334453

13. Brana I, Pham NA, Kim L, Sakashita S, Li M, Ng C, et al. Novel combinations of PI3K-mTOR inhibitors with dacomitinib or chemotherapy in PTEN-deficient patient-derived tumor xenografts. Oncotarget. 2017;8(49):84659–70. Epub 2017/11/22. doi: 10.18632/oncotarget.19109 29156674

14. Bruedigam C, Bagger FO, Heidel FH, Paine Kuhn C, Guignes S, Song A, et al. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy. Cell stem cell. 2014;15(6):775–90. Epub 2014/12/07. doi: 10.1016/j.stem.2014.11.010 25479751

15. Fulop GM, Phillips RA. The scid mutation in mice causes a general defect in DNA repair. Nature. 1990;347(6292):479–82. Epub 1990/10/04. doi: 10.1038/347479a0 2215662.

16. Biedermann KA, Sun JR, Giaccia AJ, Tosto LM, Brown JM. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(4):1394–7. Epub 1991/02/15. doi: 10.1073/pnas.88.4.1394 1996340

17. Shultz LD, Lang PA, Christianson SW, Gott B, Lyons B, Umeda S, et al. NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. Journal of immunology (Baltimore, Md: 1950). 2000;164(5):2496–507. Epub 2000/02/29. doi: 10.4049/jimmunol.164.5.2496 10679087.

18. Pearson T, Shultz LD, Miller D, King M, Laning J, Fodor W, et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clinical and experimental immunology. 2008;154(2):270–84. Epub 2008/09/13. doi: 10.1111/j.1365-2249.2008.03753.x 18785974

19. Kremer LC, van Dalen EC, Offringa M, Ottenkamp J, Voute PA. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2001;19(1):191–6. Epub 2001/01/03. doi: 10.1200/jco.2001.19.1.191 11134212.

20. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. Epub 2009/11/03. doi: 10.1182/blood-2009-07-235358 19880497.

21. Creutzig U, van den Heuvel-Eibrink MM, Gibson B, Dworzak MN, Adachi S, de Bont E, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120(16):3187–205. Epub 2012/08/11. doi: 10.1182/blood-2012-03-362608 22879540.

22. Jones L, Richmond J, Evans K, Carol H, Jing D, Kurmasheva RT, et al. Bioluminescence Imaging Enhances Analysis of Drug Responses in a Patient-Derived Xenograft Model of Pediatric ALL. Clinical cancer research: an official journal of the American Association for Cancer Research. 2017;23(14):3744–55. Epub 2017/01/26. doi: 10.1158/1078-0432.ccr-16-2392 28119366.

23. Szymanska B, Wilczynska-Kalak U, Kang MH, Liem NL, Carol H, Boehm I, et al. Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts. PLoS One. 2012;7(3):e33894. Epub 2012/04/06. doi: 10.1371/journal.pone.0033894 22479469

24. Benito JM, Godfrey L, Kojima K, Hogdal L, Wunderlich M, Geng H, et al. MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199. Cell reports. 2015;13(12):2715–27. Epub 2015/12/30. doi: 10.1016/j.celrep.2015.12.003 26711339

25. Samuels AL, Beesley AH, Yadav BD, Papa RA, Sutton R, Anderson D, et al. A pre-clinical model of resistance to induction therapy in pediatric acute lymphoblastic leukemia. Blood cancer journal. 2014;4:e232. Epub 2014/08/02. doi: 10.1038/bcj.2014.52 25083816

26. Wunderlich M, Brooks RA, Panchal R, Rhyasen GW, Danet-Desnoyers G, Mulloy JC. OKT3 prevents xenogeneic GVHD and allows reliable xenograft initiation from unfractionated human hematopoietic tissues. Blood. 2014;123(24):e134–44. Epub 2014/04/30. doi: 10.1182/blood-2014-02-556340 24778156

27. Wunderlich M, Mulloy JC. Model systems for examining effects of leukemia-associated oncogenes in primary human CD34+ cells via retroviral transduction. Methods in molecular biology (Clifton, NJ). 2009;538:263–85. Epub 2009/03/12. doi: 10.1007/978-1-59745-418-6_13 19277588

28. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS, et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer cell. 2008;13(6):483–95. Epub 2008/06/10. doi: 10.1016/j.ccr.2008.04.020 18538732

29. Lin S, Wei J, Wunderlich M, Chou FS, Mulloy JC. Immortalization of human AE pre-leukemia cells by hTERT allows leukemic transformation. Oncotarget. 2016;7(35):55939–50. Epub 2016/08/11. doi: 10.18632/oncotarget.11093 27509060

30. Mulloy JC, Cammenga J, Berguido FJ, Wu K, Zhou P, Comenzo RL, et al. Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood. 2003;102(13):4369–76. Epub 2003/08/30. doi: 10.1182/blood-2003-05-1762 12946995.

31. Townsend EC, Murakami MA, Christodoulou A, Christie AL, Koster J, DeSouza TA, et al. The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. Cancer cell. 2016;29(4):574–86. Epub 2016/04/14. doi: 10.1016/j.ccell.2016.03.008 27070704

32. Hayakawa J, Hsieh MM, Uchida N, Phang O, Tisdale JF. Busulfan produces efficient human cell engraftment in NOD/LtSz-Scid IL2Rgamma(null) mice. Stem cells (Dayton, Ohio). 2009;27(1):175–82. Epub 2008/10/18. doi: 10.1634/stemcells.2008-0583 18927475.

33. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2018;36(26):2684–92. Epub 2018/07/20. doi: 10.1200/jco.2017.77.6112 30024784

34. Baranski Z, de Jong Y, Ilkova T, Peterse EF, Cleton-Jansen AM, van de Water B, et al. Pharmacological inhibition of Bcl-xL sensitizes osteosarcoma to doxorubicin. Oncotarget. 2015;6(34):36113–25. Epub 2015/09/30. doi: 10.18632/oncotarget.5333 26416351

35. Anstee NS, Bilardi RA, Ng AP, Xu Z, Robati M, Vandenberg CJ, et al. Impact of elevated anti-apoptotic MCL-1 and BCL-2 on the development and treatment of MLL-AF9 AML in mice. Cell death and differentiation. 2018. Epub 2018/11/25. doi: 10.1038/s41418-018-0209-1 30470795.

36. Teh TC, Nguyen NY, Moujalled DM, Segal D, Pomilio G, Rijal S, et al. Enhancing venetoclax activity in acute myeloid leukemia by co-targeting MCL1. Leukemia. 2018;32(2):303–12. Epub 2017/07/29. doi: 10.1038/leu.2017.243 28751770.

37. Yu JI, Choi C, Shin SW, Son A, Lee GH, Kim SY, et al. Valproic Acid Sensitizes Hepatocellular Carcinoma Cells to Proton Therapy by Suppressing NRF2 Activation. Scientific reports. 2017;7(1):14986. Epub 2017/11/10. doi: 10.1038/s41598-017-15165-3 29118323

38. Iwamoto T, Hiraku Y, Oikawa S, Mizutani H, Kojima M, Kawanishi S. DNA intrastrand cross-link at the 5‘-GA-3’ sequence formed by busulfan and its role in the cytotoxic effect. Cancer science. 2004;95(5):454–8. Epub 2004/05/11. doi: 10.1111/j.1349-7006.2004.tb03231.x 15132775.

39. O’Steen S, Green DJ, Gopal AK, Orozco JJ, Kenoyer AL, Lin Y, et al. Venetoclax Synergizes with Radiotherapy for Treatment of B-cell Lymphomas. Cancer research. 2017;77(14):3885–93. Epub 2017/06/02. doi: 10.1158/0008-5472.CAN-17-0082 28566329

40. Miyazaki M, Uoto K, Sugimoto Y, Naito H, Yoshida K, Okayama T, et al. Discovery of DS-5272 as a promising candidate: A potent and orally active p53-MDM2 interaction inhibitor. Bioorganic & medicinal chemistry. 2015;23(10):2360–7. Epub 2015/04/18. doi: 10.1016/j.bmc.2015.03.069 25882531.

41. Fan Y, Li M, Ma K, Hu Y, Jing J, Shi Y, et al. Dual-target MDM2/MDMX inhibitor increases the sensitization of doxorubicin and inhibits migration and invasion abilities of triple-negative breast cancer cells through activation of TAB1/TAK1/p38 MAPK pathway. Cancer biology & therapy. 2018:1–16. Epub 2018/11/22. doi: 10.1080/15384047.2018.1539290 30462562.

42. Naz S, Sowers A, Choudhuri R, Wissler M, Gamson J, Mathias A, et al. Abemaciclib, a Selective CDK4/6 Inhibitor, Enhances the Radiosensitivity of Non-Small Cell Lung Cancer In Vitro and In Vivo. Clinical cancer research: an official journal of the American Association for Cancer Research. 2018;24(16):3994–4005. Epub 2018/05/03. doi: 10.1158/1078-0432.Ccr-17-3575 29716919

43. Feijen EA, Leisenring WM, Stratton KL, Ness KK, van der Pal HJ, Caron HN, et al. Equivalence Ratio for Daunorubicin to Doxorubicin in Relation to Late Heart Failure in Survivors of Childhood Cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2015;33(32):3774–80. Epub 2015/08/26. doi: 10.1200/jco.2015.61.5187 26304888

44. Schramm F, Zimmermann M, Jorch N, Pekrun A, Borkhardt A, Imschweiler T, et al. Daunorubicin during delayed intensification decreases the incidence of infectious complications—a randomized comparison in trial CoALL 08–09. Leukemia & lymphoma. 2019;60(1):60–8. Epub 2018/07/04. doi: 10.1080/10428194.2018.1473575 29966458.

45. Buckley JD, Lampkin BC, Nesbit ME, Bernstein ID, Feig SA, Kersey JH, et al. Remission induction in children with acute non-lymphocytic leukemia using cytosine arabinoside and doxorubicin or daunorubicin: a report from the Childrens Cancer Study Group. Medical and pediatric oncology. 1989;17(5):382–90. Epub 1989/01/01. doi: 10.1002/mpo.2950170507 2677628.

46. Place AE, Stevenson KE, Vrooman LM, Harris MH, Hunt SK, O’Brien JE, et al. Intravenous pegylated asparaginase versus intramuscular native Escherichia coli L-asparaginase in newly diagnosed childhood acute lymphoblastic leukaemia (DFCI 05–001): a randomised, open-label phase 3 trial. The Lancet Oncology. 2015;16(16):1677–90. Epub 2015/11/10. doi: 10.1016/S1470-2045(15)00363-0 26549586.

47. Ribera JM, Morgades M, Montesinos P, Martino R, Barba P, Soria B, et al. Efficacy and safety of native versus pegylated Escherichia coli asparaginase for treatment of adults with high-risk, Philadelphia chromosome-negative acute lymphoblastic leukemia. Leukemia & lymphoma. 2018;59(7):1634–43. Epub 2017/11/23. doi: 10.1080/10428194.2017.1397661 29165013.

48. Panetta JC, Gajjar A, Hijiya N, Hak LJ, Cheng C, Liu W, et al. Comparison of native E. coli and PEG asparaginase pharmacokinetics and pharmacodynamics in pediatric acute lymphoblastic leukemia. Clinical pharmacology and therapeutics. 2009;86(6):651–8. Epub 2009/09/11. doi: 10.1038/clpt.2009.162 19741605

49. Wunderlich M, Chou FS, Sexton C, Presicce P, Chougnet CA, Aliberti J, et al. Improved multilineage human hematopoietic reconstitution and function in NSGS mice. PLoS One. 2018;13(12):e0209034. Epub 2018/12/13. doi: 10.1371/journal.pone.0209034 30540841

50. Wang M, Yao LC, Cheng M, Cai D, Martinek J, Pan CX, et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2018;32(3):1537–49. Epub 2017/11/18. doi: 10.1096/fj.201700740R 29146734.

Článek vyšel v časopise


2019 Číslo 11