The CSF-1-receptor inhibitor, JNJ-40346527 (PRV-6527), reduced inflammatory macrophage recruitment to the intestinal mucosa and suppressed murine T cell mediated colitis

Autoři: Carl L. Manthey aff001;  Beverley A. Moore aff001;  Yanqing Chen aff001;  Matthew J. Loza aff001;  Xiang Yao aff001;  Hao Liu aff001;  Stanley M. Belkowski aff001;  Holly Raymond-Parks aff001;  Paul J. Dunford aff001;  Francisco Leon aff001;  Jennifer E. Towne aff001;  Scott E. Plevy aff001
Působiště autorů: Janssen Research & Development, LLC, Pennsylvania, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223918


Background & aims

Originally believed to be primarily a disorder of T-cell signaling, evidence shows that macrophage-lineage cells also contribute to the pathogenesis of Crohn’s disease (CD). Colony stimulating factor-1 (CSF-1) is a key regulator of the macrophage lineage, but its role in CD has not been well established. We examined transcriptional data from CD mucosa for evidence of CSF-1 pathway activation and tested JNJ-40346527 (PRV-6527), a small molecule inhibitor of CSF-1 receptor kinase (CSF-1R), for its ability to inhibit disease indices in murine colitis.


A CSF-1 pathway gene set was created from microarray data of human whole blood cultured ex vivo with CSF-1 and compared to a TNFα-induced gene set generated from epithelial-lineage cells. Gene set variation analysis was performed using existing Crohn’s mucosa microarray data comparing patients who either responded or failed to respond to anti-TNFα therapy. Commencing day 14 or day 21, mice with T-cell transfer colitis were treated with vehicle or JNJ-40346527 until study termination (day 42). Endpoints included colon weight/length ratios and histopathology scores, and macrophage and T cells were assessed by immunohistochemistry. Mucosal gene expression was investigated using RNAseq.


Both the CSF-1 and the TNFα gene sets were enriched in the colonic mucosal transcriptomes of Crohn’s disease and in mouse colitis, and expression of both gene sets was highest in patients who did not respond to anti-TNFα therapy. In these patients neither set was reduced by therapy. In the mouse model, JNJ-40346527 inhibited the increase in colon weight/length ratio by ∼50%, reduced histological disease scores by ∼60%, and reduced F4/80+ mononuclear cell and CD3+ lymphocyte numbers. RNAseq analysis confirmed the CSF-1 gene set was sharply reduced in treated mice, as were gene sets enriched in “M1” inflammatory and “M0” resident macrophages and in activated T cells.


CSF-1 biology is activated in Crohn’s disease and in murine T cell transfer colitis. Inhibition of CSF-1R by JNJ-40346527 was associated with attenuated clinical disease scores and reduced inflammatory gene expression in mice. These data provide rationale for testing JNJ-40346527 (PRV-6527) in human inflammatory bowel disease.

Klíčová slova:

Colitis – Colon – Crohn's disease – Gene expression – Macrophages – Monocytes – Mouse models – T cells


1. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–61. Epub 2010/02/06. doi: 10.1126/science.1178331 20133564; PubMed Central PMCID: PMC2887389.

2. Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity. 2011;34(2):237–46. Epub 2011/02/22. doi: 10.1016/j.immuni.2011.01.016 21333554.

3. MacDonald TT, Monteleone I, Fantini MC, Monteleone G. Regulation of homeostasis and inflammation in the intestine. Gastroenterology. 2011;140(6):1768–75. Epub 2011/05/03. doi: 10.1053/j.gastro.2011.02.047 21530743.

4. Neurath MF. IL-23: a master regulator in Crohn disease. Nat Med. 2007;13(1):26–8. Epub 2007/01/09. doi: 10.1038/nm0107-26 17206128.

5. Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O, et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013;6(3):498–510. Epub 2012/09/20. doi: 10.1038/mi.2012.89 22990622; PubMed Central PMCID: PMC3629381.

6. Kuhl AA, Erben U, Kredel LI, Siegmund B. Diversity of Intestinal Macrophages in Inflammatory Bowel Diseases. Front Immunol. 2015;6:613. Epub 2015/12/24. doi: 10.3389/fimmu.2015.00613 26697009; PubMed Central PMCID: PMC4670857.

7. Steinbach EC, Plevy SE. The role of macrophages and dendritic cells in the initiation of inflammation in IBD. Inflamm Bowel Dis. 2014;20(1):166–75. Epub 2013/08/27. doi: 10.1097/MIB.0b013e3182a69dca 23974993; PubMed Central PMCID: PMC4098861.

8. Rivollier A, He J, Kole A, Valatas V, Kelsall BL. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med. 2012;209(1):139–55. Epub 2012/01/11. doi: 10.1084/jem.20101387 22231304; PubMed Central PMCID: PMC3260867.

9. Rubio CA, Langner C, Schmidt PT. Partial to complete abrogation of the subepithelial macrophage barrier against the gut microbiota in patients with ulcerative colitis and Crohn's colitis. Histopathology. 2018;72(4):580–7. Epub 2017/10/13. doi: 10.1111/his.13417 29023984.

10. Kamada N, Hisamatsu T, Okamoto S, Chinen H, Kobayashi T, Sato T, et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J Clin Invest. 2008;118(6):2269–80. Epub 2008/05/24. doi: 10.1172/JCI34610 18497880; PubMed Central PMCID: PMC2391067.

11. Bain CC, Bravo-Blas A, Scott CL, Perdiguero EG, Geissmann F, Henri S, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol. 2014;15(10):929–37. Epub 2014/08/26. doi: 10.1038/ni.2967 25151491; PubMed Central PMCID: PMC4169290.

12. Dai J, Liu B, Cua DJ, Li Z. Essential roles of IL-12 and dendritic cells but not IL-23 and macrophages in lupus-like diseases initiated by cell surface HSP gp96. Eur J Immunol. 2007;37(3):706–15. Epub 2007/02/13. doi: 10.1002/eji.200636643 17294405.

13. Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 2012;13(8):753–60. Epub 2012/06/26. doi: 10.1038/ni.2360 22729249; PubMed Central PMCID: PMC3941469.

14. Hamilton JA, Filonzi EL, Ianches G. Regulation of macrophage colony-stimulating factor (M-CSF) production in cultured human synovial fibroblasts. Growth Factors. 1993;9(2):157–65. Epub 1993/01/01. doi: 10.3109/08977199309010831 8217219.

15. Fontana MF, de Melo GL, Anidi C, Hamburger R, Kim CY, Lee SY, et al. Macrophage Colony Stimulating Factor Derived from CD4+ T Cells Contributes to Control of a Blood-Borne Infection. PLoS Pathog. 2016;12(12):e1006046. Epub 2016/12/07. doi: 10.1371/journal.ppat.1006046 27923070; PubMed Central PMCID: PMC5140069.

16. West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B, Buonocore S, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med. 2017;23(5):579–89. Epub 2017/04/04. doi: 10.1038/nm.4307 28368383; PubMed Central PMCID: PMC5420447.

17. Ghia JE, Galeazzi F, Ford DC, Hogaboam CM, Vallance BA, Collins S. Role of M-CSF-dependent macrophages in colitis is driven by the nature of the inflammatory stimulus. Am J Physiol Gastrointest Liver Physiol. 2008;294(3):G770–7. Epub 2008/01/19. doi: 10.1152/ajpgi.00453.2007 18202111.

18. Huynh D, Akcora D, Malaterre J, Chan CK, Dai XM, Bertoncello I, et al. CSF-1 receptor-dependent colon development, homeostasis and inflammatory stress response. PLoS One. 2013;8(2):e56951. Epub 2013/03/02. doi: 10.1371/journal.pone.0056951 23451116; PubMed Central PMCID: PMC3579891.

19. Marshall D, Cameron J, Lightwood D, Lawson AD. Blockade of colony stimulating factor-1 (CSF-I) leads to inhibition of DSS-induced colitis. Inflamm Bowel Dis. 2007;13(2):219–24. Epub 2007/01/09. doi: 10.1002/ibd.20055 17206685.

20. Niebel W, Walkenbach K, Beduneau A, Pellequer Y, Lamprecht A. Nanoparticle-based clodronate delivery mitigates murine experimental colitis. J Control Release. 2012;160(3):659–65. Epub 2012/03/27. doi: 10.1016/j.jconrel.2012.03.004 22445727.

21. Genovese MC, Hsia E, Belkowski SM, Chien C, Masterson T, Thurmond RL, et al. Results from a Phase IIA Parallel Group Study of JNJ-40346527, an Oral CSF-1R Inhibitor, in Patients with Active Rheumatoid Arthritis despite Disease-modifying Antirheumatic Drug Therapy. J Rheumatol. 2015;42(10):1752–60. Epub 2015/08/04. doi: 10.3899/jrheum.141580 26233509.

22. Kolodziejczyk K SA, Teleha CA, Weerts KJH, inventorProcess for the preparation of C-FMS kinase inhibitor. United States2014.

23. Arijs I, De Hertogh G, Lemaire K, Quintens R, Van Lommel L, Van Steen K, et al. Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment. PLoS One. 2009;4(11):e7984. Epub 2009/12/04. doi: 10.1371/journal.pone.0007984 19956723; PubMed Central PMCID: PMC2776509.

24. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Epub 2013/01/18. doi: 10.1186/1471-2105-14-7 23323831; PubMed Central PMCID: PMC3618321.

25. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7. Epub 2015/03/31. doi: 10.1038/nmeth.3337 25822800; PubMed Central PMCID: PMC4739640.

26. Powrie F, Coffman RL, Correa-Oliveira R. Transfer of CD4+ T cells to C.B-17 SCID mice: a model to study Th1 and Th2 cell differentiation and regulation in vivo. Res Immunol. 1994;145(5):347–53. Epub 1994/06/01. doi: 10.1016/s0923-2494(94)80198-3 7701113.

27. Kalff JC, Schwarz NT, Walgenbach KJ, Schraut WH, Bauer AJ. Leukocytes of the intestinal muscularis: their phenotype and isolation. J Leukoc Biol. 1998;63(6):683–91. Epub 1998/06/10. doi: 10.1002/jlb.63.6.683 9620660.

28. Chen Z, Huang A, Sun J, Jiang T, Qin FX, Wu A. Inference of immune cell composition on the expression profiles of mouse tissue. Sci Rep. 2017;7:40508. Epub 2017/01/14. doi: 10.1038/srep40508 28084418; PubMed Central PMCID: PMC5233994.

29. Waddell LA, Lefevre L, Bush SJ, Raper A, Young R, Lisowski ZM, et al. ADGRE1 (EMR1, F4/80) Is a Rapidly-Evolving Gene Expressed in Mammalian Monocyte-Macrophages. Front Immunol. 2018;9:2246. Epub 2018/10/18. doi: 10.3389/fimmu.2018.02246 30327653; PubMed Central PMCID: PMC6174849.

30. Franze E, Marafini I, De Simone V, Monteleone I, Caprioli F, Colantoni A, et al. Interleukin-34 Induces Cc-chemokine Ligand 20 in Gut Epithelial Cells. J Crohns Colitis. 2016;10(1):87–94. Epub 2015/10/10. doi: 10.1093/ecco-jcc/jjv181 26449789.

31. Gren ST, Grip O. Role of Monocytes and Intestinal Macrophages in Crohn's Disease and Ulcerative Colitis. Inflamm Bowel Dis. 2016;22(8):1992–8. Epub 2016/06/01. doi: 10.1097/MIB.0000000000000824 27243595.

32. Kamada N, Hisamatsu T, Okamoto S, Sato T, Matsuoka K, Arai K, et al. Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J Immunol. 2005;175(10):6900–8. Epub 2005/11/08. doi: 10.4049/jimmunol.175.10.6900 16272349.

33. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547–51. Epub 2014/12/04. doi: 10.1038/nature13989 25470051; PubMed Central PMCID: PMC5997177.

34. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38(1):79–91. Epub 2013/01/01. doi: 10.1016/j.immuni.2012.12.001 23273845; PubMed Central PMCID: PMC3908543.

35. Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med. 2013;210(10):1977–92. Epub 2013/09/18. doi: 10.1084/jem.20131199 24043763; PubMed Central PMCID: PMC3782041.

36. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792–804. Epub 2013/04/23. doi: 10.1016/j.immuni.2013.04.004 23601688; PubMed Central PMCID: PMC3853406.

37. Irvine KM, Andrews MR, Fernandez-Rojo MA, Schroder K, Burns CJ, Su S, et al. Colony-stimulating factor-1 (CSF-1) delivers a proatherogenic signal to human macrophages. J Leukoc Biol. 2009;85(2):278–88. Epub 2008/11/14. doi: 10.1189/jlb.0808497 19004987.

38. Tagliani E, Shi C, Nancy P, Tay CS, Pamer EG, Erlebacher A. Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med. 2011;208(9):1901–16. Epub 2011/08/10. doi: 10.1084/jem.20110866 21825019; PubMed Central PMCID: PMC3171096.

39. Alexander KA, Flynn R, Lineburg KE, Kuns RD, Teal BE, Olver SD, et al. CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease. J Clin Invest. 2014;124(10):4266–80. Epub 2014/08/27. doi: 10.1172/JCI75935 25157821; PubMed Central PMCID: PMC4191032.

40. Lenzo JC, Turner AL, Cook AD, Vlahos R, Anderson GP, Reynolds EC, et al. Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunol Cell Biol. 2012;90(4):429–40. Epub 2011/07/06. doi: 10.1038/icb.2011.58 21727904.

41. MacDonald KP, Palmer JS, Cronau S, Seppanen E, Olver S, Raffelt NC, et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood. 2010;116(19):3955–63. Epub 2010/08/05. doi: 10.1182/blood-2010-02-266296 20682855.

42. Koch S, Kucharzik T, Heidemann J, Nusrat A, Luegering A. Investigating the role of proinflammatory CD16+ monocytes in the pathogenesis of inflammatory bowel disease. Clin Exp Immunol. 2010;161(2):332–41. Epub 2010/05/12. doi: 10.1111/j.1365-2249.2010.04177.x 20456413; PubMed Central PMCID: PMC2909416.

43. Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso S, et al. Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell. 2017;32(5):654–68 e5. Epub 2017/11/15. doi: 10.1016/j.ccell.2017.10.005 29136508; PubMed Central PMCID: PMC5827952.

44. Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26(2):192–7. Epub 2013/11/14. doi: 10.1016/j.cellsig.2013.11.004 24219909.

45. Turler A, Schnurr C, Nakao A, Togel S, Moore BA, Murase N, et al. Endogenous endotoxin participates in causing a panenteric inflammatory ileus after colonic surgery. Ann Surg. 2007;245(5):734–44. Epub 2007/04/26. doi: 10.1097/01.sla.0000255595.98041.6b 17457166; PubMed Central PMCID: PMC1877055.

46. Wehner S, Schwarz NT, Hundsdoerfer R, Hierholzer C, Tweardy DJ, Billiar TR, et al. Induction of IL-6 within the rodent intestinal muscularis after intestinal surgical stress. Surgery. 2005;137(4):436–46. Epub 2005/04/01. doi: 10.1016/j.surg.2004.11.003 15800492.

47. Gao CH, Dong HL, Tai L, Gao XM. Lactoferrin-Containing Immunocomplexes Drive the Conversion of Human Macrophages from M2- into M1-like Phenotype. Front Immunol. 2018;9:37. Epub 2018/02/08. doi: 10.3389/fimmu.2018.00037 29410669; PubMed Central PMCID: PMC5787126.

48. Malyshev I, Malyshev Y. Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage "Switch" Phenotype. Biomed Res Int. 2015;2015:341308. Epub 2015/09/15. doi: 10.1155/2015/341308 26366410; PubMed Central PMCID: PMC4561113.

49. Billmeier U, Dieterich W, Neurath MF, Atreya R. Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases. World J Gastroenterol. 2016;22(42):9300–13. Epub 2016/11/30. doi: 10.3748/wjg.v22.i42.9300 27895418; PubMed Central PMCID: PMC5107694.

Článek vyšel v časopise


2019 Číslo 11