Characterisation of early metazoan secretion through associated signal peptidase complex subunits, prohormone convertases and carboxypeptidases of the marine sponge (Amphimedon queenslandica)

Autoři: Michael J. Hammond aff001;  Tianfang Wang aff001;  Scott F. Cummins aff001
Působiště autorů: Genecology Research Centre, University of the Sunshine Coast, Maroochydore Dc, Queensland, Australia aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225227


Efficient communication between cells requires the ability to process precursor proteins into their mature and biologically active forms, prior to secretion into the extracellular space. Eukaryotic cells achieve this via a suite of enzymes that involve a signal peptidase complex, prohormone convertases and carboxypeptidases. Using genome and transcriptome data of the demosponge Amphimedon queenslandica, a universal ancestor to metazoan multicellularity, we endeavour to bridge the evolution of precursor processing machinery from single-celled eukaryotic ancestors through to the complex multicellular organisms that compromise Metazoa. The precursor processing repertoire as defined in this study of A. queenslandica consists of 3 defined signal peptidase subunits, 6 prohormone convertases and 1 carboxypeptidase, with 2 putative duplicates identified for signal peptidase complex subunits. Analysis of their gene expression levels throughout the sponge development enabled us to predict levels of activity. Some A. queenslandica precursor processing components belong to established functional clades while others were identified as having novel, yet to be discovered roles. These findings have clarified the presence of precursor processing machinery in the poriferans, showing the necessary machinery for the removal of precursor sequences, a critical post-translational modification required by multicellular organisms, and further sets a foundation towards understanding the molecular mechanism for ancient protein processing.

Klíčová slova:

Amino acid sequence analysis – Gene expression – Phylogenetic analysis – Sequence alignment – Sequence motif analysis – Sponges – Prohormones – Signal peptidases


1. Rokas A. The molecular origins of multicellular transitions. Current Opinion in Genetics & Development. 2008;18(6):472–8.

2. Grosberg RK, Strathmann RR. The evolution of multicellularity: A minor major transition? Annual Review of Ecology Evolution and Systematics. 2007;38:621–54.

3. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466(7307):720–U3. doi: 10.1038/nature09201 20686567

4. Seidah NG. The proprotein convertases, 20 years later. Methods in molecular biology (Clifton, NJ). 2011;768:23–57.

5. Paetzel M, Karla A, Strynadka NCJ, Dalbey RE. Signal peptidases. Chemical Reviews. 2002;102(12):4549–79. doi: 10.1021/cr010166y 12475201

6. Dalbey RE, Vonheijne G. Signal peptidases in prokaryotes and eukaryotes—a new protease family. Trends in Biochemical Sciences. 1992;17(11):474–8. doi: 10.1016/0968-0004(92)90492-r 1455520

7. Baker D, Shiau AK, Agard DA. The role of pro regions in protein folding. Current Opinion in Cell Biology. 1993;5(6):966–70. doi: 10.1016/0955-0674(93)90078-5 8129949

8. Isoe J, Zamora J, Miesfeld RL. Molecular analysis of the Aedes aegypti carboxypeptidase gene family. Insect Biochemistry and Molecular Biology. 2009;39(1):68–73. doi: 10.1016/j.ibmb.2008.09.006 18977440

9. Matthews KW, Mueller-Ortiz SL, Wetsel RA. Carboxypeptidase N: a pleiotropic regulator of inflammation. Molecular Immunology. 2004;40(11):785–93. doi: 10.1016/j.molimm.2003.10.002 14687935

10. Rouille Y, Duguay SJ, Lund K, Furuta M, Gong QM, Lipkind G, et al. Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides—The subtilisin-like proprotein convertases. Frontiers in Neuroendocrinology. 1995;16(4):322–61. doi: 10.1006/frne.1995.1012 8557169

11. Guan JM, Zhang J, Yuan SL, Yang B, Clark KD, Ling EJ, et al. Analysis of the functions of the signal peptidase complex in the midgut of Tribolium castaneum. Archives of Insect Biochemistry and Physiology. 2018;97(3).

12. Pauls D, Hamarat Y, Trufasu L, Schendzielorz TM, Gramlich G, Kahnt J, et al. Drosophila carboxypeptidase D (SILVER) is a key enzyme in neuropeptide processing required to maintain locomotor activity levels and survival rate. European Journal of Neuroscience. 2019:18.

13. Luxmi R, Blaby-Haas C, Kumar D, Rauniyar N, King SM, Mains RE, et al. Proteases Shape the Chlamydomonas Secretome: Comparison to Classical Neuropeptide Processing Machinery. Proteomes. 2018;6(4).

14. Aittomaki S, Valanne S, Lehtinen T, Matikainen S, Nyman TA, Ramet M, et al. Proprotein convertase Furin1 expression in the Drosophila fat body is essential for a normal antimicrobial peptide response and bacterial host defense. Faseb Journal. 2017;31(11):4770–82. doi: 10.1096/fj.201700296R 28705811

15. Poole CB, Jin JM, McReynolds LA. Subtilisin-like proteases in nematodes. Molecular and Biochemical Parasitology. 2007;155(1):1–8. doi: 10.1016/j.molbiopara.2007.05.001 17570539

16. Nielsen C. Six major steps in animal evolution: are we derived sponge larvae? Evolution & Development. 2008;10(2):241–57.

17. Leys SP, Rohksar DS, Degnan BM. Sponges. Current Biology. 2005;15(4):R114–R5. doi: 10.1016/j.cub.2005.02.005 15723776

18. Leys SP, Hill A. The physiolog and molecular biology of sponge tissues. Advances in Sponge Science: Physiology, Chemical and Microbial Diversity, Biotechnology. 2012;62:1–56.

19. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014;510(7503):109–+. doi: 10.1038/nature13400 24847885

20. Moreland RT, Nguyen AD, Ryan JF, Schnitzler CE, Koch BJ, Siewert K, et al. A customized Web portal for the genome of the ctenophore Mnemiopsis leidyi. Bmc Genomics. 2014;15. doi: 10.1186/1471-2164-15-15

21. Rawlings ND, Alan J, Thomas PD, Huang XD, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research. 2018;46(D1):D624–D32. doi: 10.1093/nar/gkx1134 29145643

22. Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform. 23. Japan2009. p. 205–11. 20180275

23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution. 2018;35(6):1547–9. doi: 10.1093/molbev/msy096 29722887

24. Beitz E. T(E)Xshade: shading and labeling of multiple sequence alignments using (LTEX)-T-A 2(epsilon). Bioinformatics. 2000;16(2):135–9. doi: 10.1093/bioinformatics/16.2.135 10842735

25. Felsenstein J. Confidence-limits on phylogenies—an approach using bootstrap. Evolution. 1985;39(4):783–91. doi: 10.1111/j.1558-5646.1985.tb00420.x 28561359

26. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods. 2011;8(10):785–6. doi: 10.1038/nmeth.1701 21959131

27. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology. 2001;305(3):567–80. doi: 10.1006/jmbi.2000.4315 11152613

28. Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Research. 2015;43(D1):D257–D60.

29. Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X. DOG 1.0: illustrator of protein domain structures. Cell Research. 2009;19(2):271–3. doi: 10.1038/cr.2009.6 19153597

30. Hashimshony T, Feder M, Levin M, Hall BK, Yanai I. Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature. 2015;519(7542):219–+. doi: 10.1038/nature13996 25487147

31. Dalbey RE, Lively MO, Bron S, VanDijl JM. The chemistry and enzymology of the type I signal peptidases. Protein Science. 1997;6(6):1129–38. doi: 10.1002/pro.5560060601 9194173

32. Shelness GS, Lin LJ, Nicchitta CV. Membrane topology and biogenesis of eukaryotic signal peptidase. Journal of Biological Chemistry. 1993;268(7):5201–8. 8444896

33. Fang H, Panzner S, Mullins C, Hartmann E, Green N. The homologue of mammalian SPC12 is important for efficient signal peptidase activity in Saccharomyces cerevisiae. Journal of Biological Chemistry. 1996;271(28):16460–5. doi: 10.1074/jbc.271.28.16460 8663399

34. Antonin W, Meyer HA, Hartmann E. Interactions between Spc2p and other components of the endoplasmic reticulum translocation sites of the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry. 2000;275(44):34068–72. doi: 10.1074/jbc.M006126200 10921929

35. Leys SP, Ereskovsky AV. Embryogenesis and larval differentiation in sponges. Canadian Journal of Zoology-Revue Canadienne De Zoologie. 2006;84(2):262–87.

36. Conaco C, Neveu P, Zhou H, Arcila ML, Degnan SM, Degnan BM, et al. Transcriptome profiling of the demosponge Amphimedon queenslandica reveals genome-wide events that accompany major life cycle transitions. Bmc Genomics. 2012;13.

37. Seidah NG, Mayer G, Zaid A, Rousselet E, Nassoury N, Poirier S, et al. The activation and physiological functions of the proprotein convertases. International Journal of Biochemistry & Cell Biology. 2008;40(6–7):1111–25.

38. Thacker C, Rose AM. A look at the Caenorhabditis elegans Kex2/subtilisin-like proprotein convertase family. Bioessays. 2000;22(6):545–53. doi: 10.1002/(SICI)1521-1878(200006)22:6<545::AID-BIES7>3.0.CO;2-F 10842308

39. Lee S-N, Lindberg I. 7B2 prevents unfolding and aggregation of prohormone convertase 2. Endocrinology. 2008;149(8):4116–27. doi: 10.1210/en.2008-0064 18467442

40. Lusson J, Benjannet S, Hamelin J, Savaria D, Chretien M, Seidah NG. The integrity of the RRGDL sequence of the proprotein convertase PC1 is critical for its zymogen and C-terminal processing and for its cellular trafficking. Biochemical Journal. 1997;326:737–44. doi: 10.1042/bj3260737 9307023

41. Reznik SE, Fricker LD. Carboxypeptidases from A to Z: implications in embryonic development and Wnt binding. Cellular and Molecular Life Sciences. 2001;58(12–13):1790–804. doi: 10.1007/PL00000819 11766880

42. Loh YP, Parish DC, Tuteja R. Purification and characterization of a paired basic residue-specific pro-opiomelanocortin converting enzyme from bovine pituitary intermediate lobe secretory vesicles. The Journal of biological chemistry. 1985;260(12):7194–205. 2987247

43. Kalinina E, Fontenele-Neto JD, Fricker LD. Drosophila S2 cells produce multiple forms of carboxypeptidase D with different intracellular distributions. Journal of Cellular Biochemistry. 2006;99(3):770–83. doi: 10.1002/jcb.20972 16676361

44. Tan FL, Rehli M, Krause SW, Skidgel RA. Sequence of human carboxypeptidase D reveals it to be a member of the regulatory carboxypeptidase family with three tandem active site domains. Biochemical Journal. 1997;327:81–7. doi: 10.1042/bj3270081 9355738

45. Ishikawa T, Murakami K, Kido Y, Ohnishi S, Yazaki Y, Harada F, et al. Closing, functional expression, and chromosomal localization of the human and mouse gp180-carboxypeptidase D-like enzyme. Gene. 1998;215(2):361–70. doi: 10.1016/s0378-1119(98)00270-4 9714835

Článek vyšel v časopise


2019 Číslo 11