The bacterial community in potato is recruited from soil and partly inherited across generations

Autoři: Franziska Buchholz aff001;  Livio Antonielli aff001;  Tanja Kostić aff001;  Angela Sessitsch aff001;  Birgit Mitter aff001
Působiště autorů: Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223691


Strong efforts have been made to understand the bacterial communities in potato plants and the rhizosphere. Research has focused on the effect of the environment and plant genotype on bacterial community structures and dynamics, while little is known about the origin and assembly of the bacterial community, especially in potato tubers. The tuber microbiota, however, may be of special interest as it could play an important role in crop quality, such as storage stability. Here, we used 16S rRNA gene amplicon sequencing to study the bacterial communities that colonize tubers of different potato cultivars commonly used in Austrian potato production over three generations and grown in different soils. Statistical analysis of sequencing data showed that the bacterial community of potato tubers has changed over generations and has become more similar to the soil bacterial community, while the impact of the potato cultivar on the bacterial assemblage has lost significance over time. The communities in different tuber parts did not differ significantly, while the soil bacterial community showed significant differences to the tuber microbiota composition. Additionally, the presence of OTUs in subsequent tuber generation points to vertical transmission of a subset of the tuber microbiota. Four OTUs were common to all tuber generations and all potato varieties. In summary, we conclude that the microbiota of potato tubers is recruited from the soil largely independent from the plant variety. Furthermore, the bacterial assemblage in potato tubers consists of bacteria transmitted from one tuber generation to the next and bacteria recruited from the soil.

Klíčová slova:

Agricultural soil science – Bacteria – Microbiome – Permutation – Potato – Ribosomal RNA – Seeds – Tubers


1. FAO Food losses and waste facts.2015.Available from:

2. Dale F Breeding for Storage.2014.Available from:

3. Terry LA, Medina A, Foukaraki S, Whitehead P Review of Factors Affecting Fruit and Vegetable Demand.2013.Available from:

4. Pritchard S, Lee J, Tao CW, Burgess P, Allchurch E, Campbell A, et al. WRAP. Reducing Supply Chain and Consumer Potato Waste (RBC820-004).2012.Available from:

5. Hay RKM, Porter JR. The physiology of crop yield. Oxford: Blackwell Publishing; 2006. 314 p.

6. Carli C, Mihovilovich E, Yuldashev F, Khalikov D, Kadian M. Assessment of Dormancy and Sprouting Behavior of CIP Elite and Advanced Clones Under Different Storage Conditions in Uzbekistan. Potato Research. 2010;53:313–23.

7. Suttle JC. Involvement of endogenous gibberellins in potato tuber dormancy and early sprout growth: a critical assessment. J Plant Physiol. 2004;161:157–64. doi: 10.1078/0176-1617-01222 15022829

8. Singh B, Ezekiel R. Influence of relative humidity on weight loss in potato tubers stored at high temperatures. Indian Journal of Plant Physiology. 2003;8:141–4.

9. Turner TR, James EK, Poole PS. The plant microbiome. Genome Biology. 2013;14:209-. doi: 10.1186/gb-2013-14-6-209 23805896

10. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Micro. 2013;11:789–99.

11. Pfeiffer S, Mitter B, Oswald A, Schloter-Hai B, Schloter M, Declerck S, et al. Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol Ecol. 2017;93:fiw242-fiw.

12. Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA. Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol. 1999;48:360–9.

13. Someya N, Kobayashi YO, Tsuda S, Ikeda S. Molecular Characterization of the Bacterial Community in a Potato Phytosphere. Microbes Environ. 2013;28:295–305. doi: 10.1264/jsme2.ME13006 23748858

14. Guyer A, De Vrieze M, Bönisch D, Gloor R, Musa T, Bodenhausen N, et al. The Anti-Phytophthora Effect of Selected Potato-Associated Pseudomonas Strains: From the Laboratory to the Field. Fron Microbiol. 2015;6.

15. Sessitsch A, Reiter B, Berg G. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol. 2004;50:239–49. doi: 10.1139/w03-118 15213748

16. İnceoğlu Ö, Al-Soud WA, Salles JF, Semenov AV, van Elsas JD. Comparative Analysis of Bacterial Communities in a Potato Field as Determined by Pyrosequencing. PLoS ONE. 2011;6:e23321. doi: 10.1371/journal.pone.0023321 21886785

17. Kõiv V, Roosaare M, Vedler E, Ann Kivistik P, Toppi K, Schryer D, et al. Microbial population dynamics in response to Pectobacterium atrosepticum infection in potato tubers. Sci Rep. 2015;5:11606. doi: 10.1038/srep11606 26118792

18. Reiter B, Pfeifer U, Schwab H, Sessitsch A. Response of Endophytic Bacterial Communities in Potato Plants to Infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol. 2002;68:2261–8. doi: 10.1128/AEM.68.5.2261-2268.2002 11976096

19. Chung SH, D. Scully E, Peiffer M, M. Geib S, Rosa C, Hoover K, et al. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Scientific Reports. 2017;7:39690. doi: 10.1038/srep39690 28045052

20. Rasche F, Velvis H, Zachow C, Berg G, Van Elsas J, Sessitsch A. Impact of transgenic potatoes expressing anti‐bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol. 2006;43:555–66.

21. Rasche F, Hödl V, Poll C, Kandeler E, Gerzabek MH, van Elsas JD, et al. Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure. FEMS Microbiol Ecol. 2006;56:219–35. doi: 10.1111/j.1574-6941.2005.00027.x 16629752

22. İnceoğlu Ö, Falcão Salles J, van Elsas JD. Soil and Cultivar Type Shape the Bacterial Community in the Potato Rhizosphere. Microb Ecol. 2012;63:460–70. doi: 10.1007/s00248-011-9930-8 21898103

23. Weinert N, Meincke R, Gottwald C, Heuer H, Gomes NCM, Schloter M, et al. Rhizosphere Communities of Genetically Modified Zeaxanthin-Accumulating Potato Plants and Their Parent Cultivar Differ Less than Those of Different Potato Cultivars. Appl Environ Microbiol. 2009;75:3859. doi: 10.1128/AEM.00414-09 19376893

24. Weinert N, Meincke R, Gottwald C, Heuer H, Schloter M, Berg G, et al. Bacterial diversity on the surface of potato tubers in soil and the influence of the plant genotype. FEMS Microbiol Ecol. 2010;74:114–23. doi: 10.1111/j.1574-6941.2010.00936.x 20698886

25. Sturz AV. The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil. 1995;175:257–63.

26. Fürnkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G. Microbial Diversity Inside Pumpkins: Microhabitat-Specific Communities Display a High Antagonistic Potential Against Phytopathogens. Microb Ecol. 2012;63:418–28. doi: 10.1007/s00248-011-9942-4 21947430

27. Glassner H, Zchori-Fein E, Compant S, Sessitsch A, Katzir N, Portnoy V, et al. Characterization of endophytic bacteria from cucurbit fruits with potential benefits to agriculture in melons (Cucumis melo L.). FEMS Microbiol Ecol. 2015;91:fiv074-fiv.

28. Slininger PJ, Schisler DA, Burkhead KD, Bothast RJ. Postharvest Biological Control of Potato Sprouting by Fusarium Dry Rot Suppressive Bacteria. Biocontrol Sci Technol. 2003;13:477–94.

29. de Souza PM, de Oliveira Magalhães P. Application of microbial α-amylase in industry–A review. Braz J Microbiol. 2010;41:850–61. doi: 10.1590/S1517-83822010000400004 24031565

30. Aulakh J, Regmi A. Post-Harvest Food Losses Estimation-Development of Consistent Methodology. Selected Poster Prepared for Presentation at the Agricultural & Applied Economics Association’s 2013 AAEA & CAES Joint Annual Meeting, Washington DC. 2013.

31. Liebe S, Wibberg D, Winkler A, Pühler A, Schlüter A, Varrelmann M. Taxonomic analysis of the microbial community in stored sugar beets using high-throughput sequencing of different marker genes. FEMS Microbiol Ecol. 2016;92:fiw004-fiw.

32. Buchholz F, Kostić T, Sessitsch A, Mitter B. The potential of plant microbiota in reducing postharvest food loss. Microbial Biotechnology. 2018;11:971–5. doi: 10.1111/1751-7915.13252 29582569

33. Hack H, Gall H, Klemcke T, Klose R, Meier U, Strauss R, et al. Phänologische Entwicklungsstadien der Kartoffel (Solanum tuberosum L.). Codierung und Beschreibung nach der erweiterten BBCH-Skala mit Abbildungen. Nachrichtenbl Dtsch Pflanzenschutzd. 1993;45:11–9.

34. Hartmann A, Senning M, Hedden P, Sonnewald U, Sonnewald S. Reactivation of Meristem Activity and Sprout Growth in Potato Tubers Require Both Cytokinin and Gibberellin. 2011;155:776–96.

35. Bonder MJ, Abeln S, Zaura E, Brandt BW. Comparing clustering and pre-processing in taxonomy analysis. Bioinformatics. 2012;28:2891–7. doi: 10.1093/bioinformatics/bts552 22962346

36. Escobar Rodríguez C, Mitter B, Antonielli L, Trognitz F, Compant S, Sessitsch A. Roots and Panicles of the C4 Model Grasses Setaria viridis (L). and S. pumila Host Distinct Bacterial Assemblages With Core Taxa Conserved Across Host Genotypes and Sampling Sites. Fron Microbiol. 2018;9:2708-.

37. Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, et al. A New Approach to Modify Plant Microbiomes and Traits by Introducing Beneficial Bacteria at Flowering into Progeny Seeds. Fron Microbiol. 2017;8.

38. Chelius M, Triplett E. The diversity of Archae and bacteria in association with the roots of Zea mays L.. 2001;41:252–63.

39. Samad A, Trognitz F, Compant S, Antonielli L, Sessitsch A. Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ Microbiol. 2017;19:1407–24. doi: 10.1111/1462-2920.13618 27871147

40. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The Isme Journal. 2012;6:1621. doi: 10.1038/ismej.2012.8 22402401

41. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. doi: 10.1038/nmeth.1923 22388286

42. Yi H, Li Z, Li T, Zhao J. Bayexer: an accurate and fast Bayesian demultiplexer for Illumina sequences. Bioinformatics. 2015;31:4000–2. doi: 10.1093/bioinformatics/btv501 26315903

43. Nikolenko SI, Korobeynikov AI, Alekseyev MA. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics. 2013;14:S7–S.

44. Schirmer M, Ijaz U, D'Amore R, Hall N, Sloan WT, Quince C. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 2015;43:e37–e. doi: 10.1093/nar/gku1341 25586220

45. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20. doi: 10.1093/bioinformatics/btt593 24142950

46. Martin M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet Journal. 2018;17:10–2.

47. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996. doi: 10.1038/nmeth.2604 23955772

48. Edgar RC, Flyvbjerg H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics. 2015;31:3476–82. doi: 10.1093/bioinformatics/btv401 26139637

49. Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, et al. metaxa2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Molecular Ecology Resources. 2015;15:1403–14. doi: 10.1111/1755-0998.12399 25732605

50. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6. doi: 10.1038/nmeth.f.303 20383131

51. Rognes T VSEARCH: versatile open-source tool for metagenomics.2015.Available from:

52. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol. 2007;73:5261–7. doi: 10.1128/AEM.00062-07 17586664

53. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D6. doi: 10.1093/nar/gks1219 23193283

54. Chen W, Simpson C, Levesque A RAM: R for Amplicon-Sequencing-Based Microbial-Ecology. R package version from:

55. Saary P, Forslund K, Bork P, Hildebrand F. RTK: efficient rarefaction analysis of large datasets. R package version 2017.

56. Hervé M RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package version 0.9-69-3.2019.Available from:

57. Lahti L, Shetty S, Blake T, Salojarvi J Tools for microbiome analysis in R. Version n 1.4.22018.Available from:

58. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15:293. doi: 10.1186/1471-2105-15-293 25176396

59. Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2. doi: 10.1038/nmeth.2658 24076764

60. Paulson J, Olson N, Wagner J, Talukder H, Pop M, Bravo H metagenomSeq: Statistical analysis for sparse high-throughput sequencing. R package Version 1.24.12019.Available from:

61. McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217 23630581

62. Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R Package. Version 2. 5–2.2018.Available from: = vegan.

63. Wang Y, Naumann U, Wright ST, Warton DI. mvabund–an R package for model-based analysis of multivariate abundance data. Methods in Ecology and Evolution. 2012;3:471–4.

64. Rosenblueth M, Martínez-Romero E. Bacterial Endophytes and Their Interactions with Hosts. Mol Plant-Microbe Interact. 2006;19:827–37. doi: 10.1094/MPMI-19-0827 16903349

65. Kobayashi A, Kobayashi YO, Someya N, Ikeda S. Community Analysis of Root- and Tuber-Associated Bacteria in Field-Grown Potato Plants Harboring Different Resistance Levels against Common Scab. Microbes Environ. 2015;30:301–9. doi: 10.1264/jsme2.ME15109 26657303

66. Haichar FeZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, et al. Plant host habitat and root exudates shape soil bacterial community structure. The Isme Journal. 2008;2:1221. doi: 10.1038/ismej.2008.80 18754043

67. Lakshmanan V, Bais HP. Factors other than root secreted malic acid that contributes toward Bacillus subtilis FB17 colonization on Arabidopsis roots. Plant signaling & behavior. 2013;8:e27277–e.

68. Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. The Journal of biological chemistry. 2013;288:4502–12. doi: 10.1074/jbc.M112.433300 23293028

69. Carvalhais L, Muzzi F, Tan C-H, Choo JH, Schenk P. Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities. Front Plant Sci. 2013;4.

70. Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 2015;349:860. doi: 10.1126/science.aaa8764 26184915

71. Bergna A, Cernava T, Rändler M, Grosch R, Zachow C, Berg G. Tomato Seeds Preferably Transmit Plant Beneficial Endophytes. Phytobiomes Journal. 2018;2:183–93.

72. Vannier N, Mony C, Bittebiere A-K, Michon-Coudouel S, Biget M, Vandenkoornhuyse P. A microorganisms’ journey between plant generations. Microbiome. 2018;6:79. doi: 10.1186/s40168-018-0459-7 29695286

73. Rezki S, Campion C, Simoneau P, Jacques M-A, Shade A, Barret M. Assembly of seed-associated microbial communities within and across successive plant generations. Plant Soil. 2018;422:67–79.

74. Johnston-Monje D, Raizada MN. Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology. PLOS ONE. 2011;6:e20396. doi: 10.1371/journal.pone.0020396 21673982

75. Walker TS, Bais HP, Grotewold E, Vivanco JM. Root Exudation and Rhizosphere Biology. Plant Physiol. 2003;132:44. doi: 10.1104/pp.102.019661 12746510

76. Lottmann J, Heuer H, Smalla K, Berg G. Beneficial bacteria in the underground organs of potato (Solanum tuberosum L.). St. Paul, Minnesota: APS Press; 2000. 264–8 p.

77. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev. 2015;79:293–320. doi: 10.1128/MMBR.00050-14 26136581

78. Helias V, Andrivon D, Jouan B. Internal colonization pathways of potato plants by Erwinia carotovora ssp atroseptica. Plant Pathol. 2000;49:33–42.

Článek vyšel v časopise


2019 Číslo 11