Association between cerebral atrophy and osteoporotic vertebral compression fractures

Autoři: In-Suk Bae aff001;  Jae Min Kim aff001;  Jin Hwan Cheong aff001;  Myung-Hoon Han aff001;  Je Il Ryu aff001
Působiště autorů: Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Gyonggi-do, Korea aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224439



Osteoporotic vertebral compression fractures (OVCFs) have a serious impact on people’s health and quality of life. The purpose of this study was to analyze brain volume in patients with osteoporosis using brain magnetic resonance imaging (MRI) and to investigate the relationship with osteoporotic vertebral compression fractures.

Materials and methods

We included 246 patients with osteoporosis who underwent thoracolumbar radiographs and brain MRI at our hospital. Clinical data on age, sex, bone mineral density, height, weight, osteoporosis medication, hypertension, diabetes, alcohol drinking, and smoking were collected. Intracranial cavity, brain parenchyma, and lateral ventricles volumes were measured using brain MRI with a semiautomated tool.


We founded an independent correlation between age and volume percentages of the brain parenchyma and lateral ventricles. We observed a statistically significant decrease in volume percentage of the brain parenchyma and an increase in volume percentage of the lateral ventricles with increasing age. In addition, we confirmed that patients with OVCF showed a significantly lower volume percentage of brain parenchyma than patients without OVCF.


We observed a significant association between OVCF and volume percentage of brain parenchyma. Degeneration of the brain may lead to a high incidence of falls, and OVCF may occur more frequently in patients with osteoporosis.

Klíčová slova:

Alzheimer's disease – Atrophy – Bone fracture – Brain diseases – Magnetic resonance imaging – Neuroimaging – Osteoporosis


1. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009;301: 513–521. doi: 10.1001/jama.2009.50 19190316

2. Bliuc D, Nguyen ND, Nguyen TV, Eisman JA, Center JR. Compound risk of high mortality following osteoporotic fracture and refracture in elderly women and men. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28: 2317–2324. doi: 10.1002/jbmr.1968 23616397

3. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2006;17: 1726–1733. doi: 10.1007/s00198-006-0172-4 16983459

4. Stevens JA, Olson S. Reducing falls and resulting hip fractures among older women. MMWR Recomm Rep Morb Mortal Wkly Rep Recomm Rep. 2000;49: 3–12.

5. Nevitt MC, Cummings SR, Kidd S, Black D. Risk factors for recurrent nonsyncopal falls. A prospective study. JAMA. 1989;261: 2663–2668. 2709546

6. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988;319: 1701–1707. doi: 10.1056/NEJM198812293192604 3205267

7. Critchley M. On senile disorders of gait, including the so-called senile paraplegia. Geriatrics. 1948;3: 364–370. 18893756

8. Fisher CM. Hydrocephalus in walking problems of the elderly. Trans Am Neurol Assoc. 1980;105: 29–33. 7348975

9. Apostolova LG, Green AE, Babakchanian S, Hwang KS, Chou Y-Y, Toga AW, et al. Hippocampal Atrophy and Ventricular Enlargement in Normal Aging, Mild Cognitive Impairment (MCI), and Alzheimer Disease: Alzheimer Dis Assoc Disord. 2012;26: 17–27. doi: 10.1097/WAD.0b013e3182163b62 22343374

10. Resnick SM, Goldszal AF, Davatzikos C, Golski S, Kraut MA, Metter EJ, et al. One-year age changes in MRI brain volumes in older adults. Cereb Cortex N Y N 1991. 2000;10: 464–472. doi: 10.1093/cercor/10.5.464 10847596

11. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage. 2001;14: 21–36. doi: 10.1006/nimg.2001.0786 11525331

12. Çağdaş; EKİM O. 3 Tesla Magnetic resonance imaging and multiplanar reconstruction of the brain and its associated structures in pig. Ank Üniversitesi Vet Fakültesi Derg. 2011;58: 73–78. doi: 10.1501/Vetfak_0000002453

13. Gonzalo Domínguez M, Hernández C, Ruisoto P, Juanes JA, Prats A, Hernández T. Morphological and Volumetric Assessment of Cerebral Ventricular System with 3D Slicer Software. J Med Syst. 2016;40: 154. doi: 10.1007/s10916-016-0510-9 27147517

14. Ma Z, Chen X, Huang Y, He L, Liang C, Liang C, et al. MR diffusion-weighted imaging-based subcutaneous tumour volumetry in a xenografted nude mouse model using 3D Slicer: an accurate and repeatable method. Sci Rep. 2015;5: 15653. doi: 10.1038/srep15653 26489359

15. Alperin N, Ranganathan S, Bagci AM, Adams DJ, Ertl-Wagner B, Saraf-Lavi E, et al. MRI evidence of impaired CSF homeostasis in obesity-associated idiopathic intracranial hypertension. AJNR Am J Neuroradiol. 2013;34: 29–34. doi: 10.3174/ajnr.A3171 22766676

16. Kaye JA, DeCarli C, Luxenberg JS, Rapoport SI. The significance of age-related enlargement of the cerebral ventricles in healthy men and women measured by quantitative computed X-ray tomography. J Am Geriatr Soc. 1992;40: 225–231. doi: 10.1111/j.1532-5415.1992.tb02073.x 1538040

17. Fox NC, Schott JM. Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. The Lancet. 2004;363: 392–394. doi: 10.1016/S0140-6736(04)15441-X

18. Wang H-K, Hung C-M, Lin S-H, Tai Y-C, Lu K, Liliang P-C, et al. Increased risk of hip fractures in patients with dementia: a nationwide population-based study. BMC Neurol. 2014;14: 175. doi: 10.1186/s12883-014-0175-2 25213690

19. Zhao Y, Shen L, Ji H-F. Alzheimer’s disease and risk of hip fracture: a meta-analysis study. ScientificWorldJournal. 2012;2012: 872173. doi: 10.1100/2012/872173 22629218

20. Li M, Meng Y, Wang M, Yang S, Wu H, Zhao B, et al. Cerebral gray matter volume reduction in subcortical vascular mild cognitive impairment patients and subcortical vascular dementia patients, and its relation with cognitive deficits. Brain Behav. 2017;7: e00745. doi: 10.1002/brb3.745 28828207

21. Nestor SM, Rupsingh R, Borrie M, Smith M, Accomazzi V, Wells JL, et al. Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain. 2008;131: 2443–2454. doi: 10.1093/brain/awn146 18669512

22. Toepper M. Dissociating Normal Aging from Alzheimer’s Disease: A View from Cognitive Neuroscience. J Alzheimers Dis JAD. 2017;57: 331–352. doi: 10.3233/JAD-161099 28269778

23. Masdeu JC, Lantos G, Wolfson L. Hemispheric white matter lesions in the elderly prone to falling. Acta Radiol Suppl. 1986;369: 392. 2980506

24. Qin W, Bauman WA, Cardozo CP. Evolving concepts in neurogenic osteoporosis. Curr Osteoporos Rep. 2010;8: 212–218. doi: 10.1007/s11914-010-0029-9 20820963

25. Elefteriou F. Regulation of bone remodeling by the central and peripheral nervous system. Arch Biochem Biophys. 2008;473: 231–236. doi: 10.1016/ 18410742

26. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111: 305–317. doi: 10.1016/s0092-8674(02)01049-8 12419242

27. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100: 197–207. doi: 10.1016/s0092-8674(00)81558-5 10660043

28. Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, et al. Hypothalamic Y2 receptors regulate bone formation. J Clin Invest. 2002;109: 915–921. doi: 10.1172/JCI14588 11927618

29. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434: 514–520. doi: 10.1038/nature03398 15724149

30. Jones KB, Mollano AV, Morcuende JA, Cooper RR, Saltzman CL. Bone and brain: a review of neural, hormonal, and musculoskeletal connections. Iowa Orthop J. 2004;24: 123–132. 15296219

Článek vyšel v časopise


2019 Číslo 11