Sex differences in body composition but not neuromuscular function following long-term, doxycycline-induced reduction in circulating levels of myostatin in mice


Autoři: Dallin Tavoian aff001;  W. David Arnold aff002;  Sophia C. Mort aff001;  Sonsoles de Lacalle aff003
Působiště autorů: Program in Translational Biomedical Sciences, 1 Ohio University, Athens, OH, United States of America aff001;  Departments of Neurology, PM&R, and Neuroscience, and Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States of America aff002;  Sonsoles de Lacalle, Department of Biomedical Sciences,1 Ohio University, Athens, OH, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225283

Souhrn

Age-related declines in muscle function result from changes in muscle structure and contractile properties, as well as from neural adaptations. Blocking myostatin to drive muscle growth is one potential therapeutic approach. While the effects of myostatin depletion on muscle characteristics are well established, we have very little understanding of its effects on the neural system. Here we assess the effects of long-term, post-developmental myostatin reduction on electrophysiological motor unit characteristics and body composition in aging mice. We used male (N = 21) and female (N = 26) mice containing a tetracycline-inducible system to delete the myostatin gene in skeletal muscle. Starting at 12 months of age, half of the mice were administered doxycycline (tetracycline) through their chow for one year. During that time we measured food intake, body composition, and hindlimb electromyographic responses. Doxycycline-induced myostatin reduction had no effect on motor unit properties for either sex, though significant age-dependent declines in motor unit number occurred in all mice. However, treatment with doxycycline induced different changes in body composition between sexes. All female mice increased in total, lean and fat mass, but doxycycline-treated female mice experienced a significantly larger increase in lean mass than controls. All male mice also increased total and lean mass, but administration of doxycycline had no effect. Additionally, doxycycline-treated male mice maintained their fat mass at baseline levels, while the control group experienced a significant increase from baseline and compared to the doxycycline treated group. Our results show that long-term administration of doxycycline results in body composition adaptations that are distinctive between male and female mice, and that the effects of myostatin reduction are most pronounced during the first three months of treatment. We also report that age-related changes in motor unit number are not offset by reduced myostatin levels, despite increased lean mass exhibited by female mice.

Klíčová slova:

Doxycycline – Fats – Food consumption – Mouse models – Muscle electrophysiology – Muscle functions – Nerve fibers – Skeletal muscles


Zdroje

1. Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord. 2017;16(1):10.

2. Leveille S, Penninx B, Melzer D, Izmirlian G, Guralnik J. Sex differences in the prevalence of mobility disability in old age:the dynamics of incidence, recovery, and mortality. J Gerontol B Psychol Sci Soc Sci. 2000;55(1):S41–50. doi: 10.1093/geronb/55.1.s41 10728129

3. Oman D, Reed D, Ferrara A. Do elderly women have more physical disability than men do? Am J Epidemiol. 1999;150(8):834–42. doi: 10.1093/oxfordjournals.aje.a010088 10522654

4. Murtagh KN, Hubert HB. Gender differences in physical disability among an elderly cohort. Am J Public Health. 2004;94(8):1406–11. doi: 10.2105/ajph.94.8.1406 15284051

5. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018;0:1–16.

6. Grimby G, Saltin B. The ageing muscle. Clin Physiol. 1983;3:209–18. doi: 10.1111/j.1475-097x.1983.tb00704.x 6347501

7. Delmonico MJ, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, Boudreau R, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90(6):1579–85. doi: 10.3945/ajcn.2009.28047 19864405

8. Martinez BP, Ramos IR, Oliveira QC de, Santos RA dos, Marques MD, Forgiarini Júnior LA, et al. Is there an association between mass and skeletal muscle strength in hospitalized elderly persons? Rev Bras Geriatr Gerontol. 2016;19(2):257–64.

9. Chen L, Nelson DR, Zhao Y, Cui Z, Johnston JA. Relationship between muscle mass and muscle strength, and the impact of comorbidities: a population-based, cross-sectional study of older adults in the United States. BMC Geriatrics. 2013;13(1):8.

10. Clark BC, Manini TM. What is dynapenia? Nutrition. 2012;28(5):495–503. doi: 10.1016/j.nut.2011.12.002 22469110

11. Purves D, Augustine GJ, Fitzpatrick D. Neuroscience [Internet]. 2nd edition. Sunderland, MA: Sinauer Associates; 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK10874/

12. Russ DW, Gregg-Cornell K, Conaway MJ, Clark BC. Evolving concepts on the age-related changes in “muscle quality.” J Cachexia Sarcopenia Muscle. 2012;3(2):95–109. doi: 10.1007/s13539-011-0054-2 22476917

13. McPherron AC, Lawler AM, Lee S-J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature. 1997;387:83–90. doi: 10.1038/387083a0 9139826

14. Amthor H, Macharia R, Navarrete R, Schuelke M, Brown S, Otto A, et al. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci U S A. 2007;104(6):1835–40. doi: 10.1073/pnas.0604893104 17267614

15. Mendias CL, Bakhurin KI, Faulkner JA. Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc Natl Acad Sci U S A. 2008;105(1):388–93. doi: 10.1073/pnas.0707069105 18162552

16. Chabi B, Pauly M, Carnac G, Favier FB, Fouret G, Bonafos B, et al. Protective effect of myostatin gene deletion on aging-related muscle metabolic decline. Exp Gerontol. 2016;78:23–31. doi: 10.1016/j.exger.2016.01.016 26944368

17. Elashry MI, Otto A, Matsakas A, El-Morsy SE, Jones L, Anderson B, et al. Axon and muscle spindle hyperplasia in the myostatin null mouse. J Anat. 2011;218:173–84. doi: 10.1111/j.1469-7580.2010.01327.x 21208206

18. Gay S, Jublanc E, Bonnieu A, Bacou F. Myostatin deficiency is associated with an increase in number of total axons and motor axons innervating mouse tibialis anterior muscle. Muscle Nerve. 2012;45:698–704. doi: 10.1002/mus.23242 22499097

19. Mendias CL, Marcin JE, Calerdon DR, Faulkner JA. Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J Appl Physiol. 2006;101(3):898–905. doi: 10.1152/japplphysiol.00126.2006 16709649

20. Welle S, Bhatt K, Pinkert CA, Tawil R, Thornton CA. Muscle growth after postdevelopmental myostatin gene knockout. Am J Physiol Endocrinol Metab. 2007;292(4):E985–91. doi: 10.1152/ajpendo.00531.2006 17148752

21. Welle S, Burgess K, Thornton CA, Tawil R. Relation between extent of myostatin depletion and muscle growth in mature mice. Am J Physiol Endocrinol Metab. 2009;297(4):E935–40. doi: 10.1152/ajpendo.00179.2009 19654287

22. Williams SH, Lozier NR, Muntuelle SJ, de Lacalle S. Effect of postnatal myostatin inhibition on bite mechanics in mice. PLOS ONE. 2015;10(8):12.

23. Personius KE, Jayaram A, Krull D, Brown R, Xu T, Han B, et al. Grip force, EDL contractile properties, and voluntary wheel running after postdevelopmental myostatin depletion in mice. J Appl Physiol. 2010;109(3):886–94. doi: 10.1152/japplphysiol.00300.2010 20595537

24. Burgess K, Xu T, Brown R, Han B, Welle S. Effect of myostatin depletion on weight gain, hyperglycemia, and hepatic steatosis during five months of high-fat feeding in mice. Castro M, editor. PLOS ONE. 2011;6(2):e17090. doi: 10.1371/journal.pone.0017090 21390326

25. Murphy KT, Koopman R, Naim T, Leger B, Trieu J, Ibebunjo C, et al. Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J. 2010;24(11):4433–42. doi: 10.1096/fj.10-159608 20624929

26. Matsakas A, Foster K, Otto A, Macharia R, Elashry MI, Feist S, et al. Molecular, cellular and physiological investigation of myostatin propeptide-mediated muscle growth in adult mice. Neuromuscul Disord. 2009;19:489–99. doi: 10.1016/j.nmd.2009.06.367 19541486

27. Latres E, Pangilinan J, Miloscio L, Bauerlein R, Na E, Potocky TB, et al. Myostatin blockade with a fully human monoclonal antibody induces muscle hypertrophy and reverses muscle atrophy in young and aged mice. Skelet Muscle. 2015;5(34):1–13.

28. LeBrasseur NK, Schelhorn TM, Bernardo BL, Cosgrove PG, Loria PM, Brown TA. Myostatin inhibition enhances the effects of exercise on performance and metabolic outcomes in aged mice. J Gerontol A Biol Sci Med Sci. 2009;64A(9):940–8.

29. Siriett V, Salerno MS, Berry C, Nicholas G, Bower R, Kambadur R, et al. Antagonism of myostatin enhances muscle regeneration during sarcopenia. Mol Ther. 2007;15(8):1463–70. doi: 10.1038/sj.mt.6300182 17551508

30. Camporez J-PG, Petersen MC, Abudukadier A, Moreira GV, Jurczak MJ, Friedman G, et al. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc Natl Acad Sci U S A. 2016;113(8):2212–7. doi: 10.1073/pnas.1525795113 26858428

31. Falke LL, Broekhuizen R, Huitema A, Maarseveen E, Nguyen TQ, Goldschmeding R. Tamoxifen for induction of Cre-recombination may confound fibrosis studies in female mice. J Cell Commun Signal. 2017;11(2):205–11. doi: 10.1007/s12079-017-0390-x 28497232

32. Luger A-L, Sauer B, Lorenz N, Engel A, Braun Y, Voss M, et al. Doxycycline impairs mitochondrial function and protects human glioma cells from hypoxia-induced cell death: implications of using Tet-inducible systems. Int J Mol Sci. 2018;19(5):17.

33. Ahler E, Sullivan WJ, Cass A, Braas D, York AG, Bensinger SJ, et al. Doxycycline alters metabolism and proliferation of human cell lines. Samant R, editor. PLOS ONE. 2013 May 31;8(5):e64561. doi: 10.1371/journal.pone.0064561 23741339

34. Chatzispyrou IA, Held NM, Mouchiroud L, Auwerx J, Houtkooper RH. Tetracycline antibiotics impair mitochondrial function and its experimental use confounds research. Cancer Res. 2015;75(21):4446–9. doi: 10.1158/0008-5472.CAN-15-1626 26475870

35. Rao P, Monks DA. A tetracycline-inducible and skeletal muscle-specific Cre recombinase transgenic mouse. Dev Neurobiol. 2009;69(6):401–6. doi: 10.1002/dneu.20714 19263419

36. Wu L-F, Zhu D-C, Wang B-H, Lu Y-H, He P, Zhang Y-H, et al. Relative abundance of mature myostatin rather than total myostatin is negatively associated with bone mineral density in Chinese. J Cell Mol Med. 2018;22(2):1329–36. doi: 10.1111/jcmm.13438 29247983

37. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela A, Tomkinson KN, et al. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296:1486–8. doi: 10.1126/science.1069525 12029139

38. Palmer AJ, Chung M-Y, List EO, Walker J, Okada S, Kopchick JJ, et al. Age-related changes in body composition of bovine growth hormone transgenic mice. Endocrinology. 2009;150(3):1353–60. doi: 10.1210/en.2008-1199 18948397

39. Arnold WD, Porensky PN, McGovern VL, Iyer CC, Duque S, Li X, et al. Electrophysiological biomarkers in spinal muscular atrophy: proof of concept. Ann Clin Transl Neurol. 2014;1(1):34–44. doi: 10.1002/acn3.23 24511555

40. Arnold WD, Sheth KA, Wier CG, Kissel JT, Burghes AH, Kolb SJ. Electrophysiological motor unit number estimation (MUNE) measuring compound muscle action potential (CMAP) in mouse hindlimb muscles. J Vis Exp. 2015;103(e52899):1–8.

41. Sheth KA, Iyer CC, Wier CG, Crum AE, Bratasz A, Kolb SJ, et al. Muscle strength and size are associated with motor unit connectivity in aged mice. Neurobiol Aging. 2018;67:128–6. doi: 10.1016/j.neurobiolaging.2018.03.016 29656012

42. Jackson MF, Luong D, Vang DD, Garikipati DK, Stanton JB, Nelson OL, et al. The aging myostatin null phenotype: reduced adiposity, cardiac hypertrophy, enhanced cardiac stress response, and sexual dimorphism. J Endocrinol. 2012;213(3):263–75. doi: 10.1530/JOE-11-0455 22431133

43. Reisz-Porszasz S, Bhasin S, Artaza JN, Shen R, Sinha-Hikim I, Hogue A, et al. Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol Endocrinol Metab. 2003;285(4):E876–88. doi: 10.1152/ajpendo.00107.2003 12824080

44. Doherty TJ. Invited Review: Aging and sarcopenia. J Appl Physiol. 2003;95(4):1717–27. doi: 10.1152/japplphysiol.00347.2003 12970377

45. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52(1):80–5. doi: 10.1111/j.1532-5415.2004.52014.x 14687319

46. Metter EJ, Schrager M, Ferrucci L, Talbot LA. Evaluation of movement speed and reaction time as predictors of all-cause mortality in men. J Gerontol A Biol Sci Med Sci. 2005;60(7):840–6. doi: 10.1093/gerona/60.7.840 16079205

47. Piasecki M, Ireland A, Coulson J, Stashuk DW, Hamilton-Wright A, Swiecicka A, et al. Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: evidence that athletic older people are not spared from age-related motor unit remodeling. Physiological Reports. 2016 Oct;4(19):e12987. doi: 10.14814/phy2.12987 27694526

48. Hepple RT, Rice CL. Innervation and neuromuscular control in ageing skeletal muscle: Innervation and neuromuscular control in ageing skeletal muscle. J Physiol. 2016;594(8):1965–78. doi: 10.1113/JP270561 26437581

49. Wilkinson DJ, Piasecki M, Atherton PJ. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev. 2018;47:123–32. doi: 10.1016/j.arr.2018.07.005 30048806

50. Mendias CL, Bakhurin KI, Gumucio JP, Shallal-Ayzin MV, Davis CS, Faulkner JA. Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice. Aging Cell. 2015;14(4):704–6. doi: 10.1111/acel.12339 25808276

51. Hennebry A, Berry C, Siriett V, O’Callaghan P, Chau L, Watson T, et al. Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. Am J Physiol Cell Physiol. 2009;296:C525–34. doi: 10.1152/ajpcell.00259.2007 19129464

52. Byron CD, Hamrick MW, Wingard CJ. Alterations of temporalis muscle contractile force and histological content from the myostatin and Mdx deficient mouse. Arch Oral Biol. 2006;51(5):396–405. doi: 10.1016/j.archoralbio.2005.09.006 16263075

53. McMahon CD, Popovic L, Oldham JM, Jeanplong F, Smith HK, Kambadur R, et al. Myostatin-deficient mice lose more skeletal muscle mass than wild-type controls during hindlimb suspension. Am J Physiol Endocrinol Metab. 2003;285(1):E82–7. doi: 10.1152/ajpendo.00275.2002 12618358

54. Whittemore L-A, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, et al. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun. 2003;300(4):965–71. doi: 10.1016/s0006-291x(02)02953-4 12559968

55. White TA, LeBrasseur NK. Myostatin and sarcopenia: opportunities and challenges—a mini-review. Gerontology. 2014;60(4):289–93. doi: 10.1159/000356740 24457615

56. Oldham JM, Osepchook CC, Jeanplong F, Falconer SJ, Matthews KG, Conaglen JV, et al. The decrease in mature myostatin protein in male skeletal muscle is developmentally regulated by growth hormone: GH regulates the post-translational decrease in myostatin. J Physiol. 2009;587(3):669–77. doi: 10.1113/jphysiol.2008.161521 19047209

57. Roith DL, Bondy C, Yakar S, Liu J-L, Butler A. The somatomedin hypothesis: 2001. Endocr Rev. 2001;22(1):53–74. doi: 10.1210/edrv.22.1.0419 11159816

58. Ueberschlag-Pitiot V, Stantzou A, Messéant J, Lemaitre M, Owens DJ, Noirez P, et al. Gonad-related factors promote muscle performance gain during postnatal development in male and female mice. Am J Physiol Endocrinol Metab. 2017;313(1):E12–25. doi: 10.1152/ajpendo.00446.2016 28351832

59. McMahon CD, Popovic L, Jeanplong F, Oldham JM, Kirk SP, Osepchook CC, et al. Sexual dimorphism is associated with decreased expression of processed myostatin in males. Am J Physiol Endocrinol Metab. 2003;284(2):E377–81. doi: 10.1152/ajpendo.00282.2002 12388123

60. Kahlert S, Grohé C, Karas RH, Löbbert K, Neyses L, Vetter H. Effects of estrogen on skeletal myoblast growth. Biochem Biophys Res Commun. 1997;232(2):373–8. doi: 10.1006/bbrc.1997.6223 9125184

61. Smith GI, Reeds DN, Hall AM, Chambers KT, Finck BN, Mittendorfer B. Sexually dimorphic effect of aging on skeletal muscle protein synthesis. Biol Sex Differ. 2012;3(1):11. doi: 10.1186/2042-6410-3-11 22620287

62. Toth MJ, Poehlman ET, Matthews DE, Tchernof A, MacCoss MJ. Effects of estradiol and progesterone on body composition, protein synthesis, and lipoprotein lipase in rats. Am J Physiol Endocrinol Metab. 2001 Mar;280(3):E496–501. doi: 10.1152/ajpendo.2001.280.3.E496 11171605

63. Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M. Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol. 2006;209(3):866–73. doi: 10.1002/jcp.20778 16972257

64. Wagner KR, Liu X, Chang X, Allen RE. Muscle regeneration in the prolonged absence of myostatin. Proc Natl Acad Sci U S A. 2005;102(7):2519–24. doi: 10.1073/pnas.0408729102 15699335

65. Shefner JM. Motor unit number estimation in human neurological diseases and animal models. Clinical Neurophysiology. 2001;112(6):955–64. doi: 10.1016/s1388-2457(01)00520-x 11377252

66. Gooch CL, Doherty TJ, Chan KM, Bromberg MB, Lewis RA, Stashuk DW, et al. Motor unit number estimation: A technology and literature review: MUNE Technology Review. Muscle Nerve. 2014;50(6):884–93. doi: 10.1002/mus.24442 25186553

67. McHanwell S, Biscoe TJ. The Localization of Motoneurons Supplying the Hindlimb Muscles of the Mouse. Philosophical Transactions of the Royal Society B: Biological Sciences. 1981 Aug 12;293(1069):477–508.

68. Considerations for choosing controls [Internet]. The Jackson Laboratory; [cited 2019 May 2]. Available from: https://www.jax.org/jax-mice-and-services/customer-support/technical-support/breeding-and-husbandry-support/considerations-for-choosing-controls#

69. Wang N, Tian X, Chen Y, Tan H, Xie P, Chen S, et al. Low dose doxycycline decreases systemic inflammation and improves glycemic control, lipid profiles, and islet morphology and function in db/db mice. Sci Rep [Internet]. 2017 [cited 2019 May 2];7(1). Available from: http://www.nature.com/articles/s41598-017-14408-7

70. McPherron AC, Lee S-J. Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest. 2002;109(5):595–601. doi: 10.1172/JCI13562 11877467

71. Guo T, Jou W, Chanturiya T, Portas J, Gavrilova O, McPherron AC. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. Calbet JAL, editor. PLOS ONE. 2009;4(3):e4937. doi: 10.1371/journal.pone.0004937 19295913

72. Mosler S, Relizani K, Mouisel E, Amthor H, Diel P. Combinatory effects of siRNA-induced myostatin inhibition and exercise on skeletal muscle homeostasis and body composition. Physiol Rep. 2014;2(3):e00262. doi: 10.1002/phy2.262 24760516

73. Akpan I, Goncalves MD, Dhir R, Yin X, Pistilli EE, Bogdanovich S, et al. The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity. Int J Obes. 2009;33(11):1265–73.

74. Lozier NR, Kopchick JJ, de Lacalle S. Relative contributions of myostatin and the GH/IGF-1 Axis in body composition and muscle strength. Front Physiol. 2018;9:1–6. doi: 10.3389/fphys.2018.00001 29377031

75. Luo Z, Luo Q, Xuan M, Han S, Wang J, Guo Q, et al. Comparison of internal organs between myostatin mutant and wild-type piglets. J Sci Food Agric. 2019;Accepted Author Manuscript.

76. Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metabolism. 2015;22(1):164–74. doi: 10.1016/j.cmet.2015.05.010 26001423

77. Lee S-J. Quadrupling muscle mass in mice by targeting TGF-ß signaling pathways. Callaerts P, editor. PLOS ONE. 2007;2(8):e789. doi: 10.1371/journal.pone.0000789 17726519


Článek vyšel v časopise

PLOS One


2019 Číslo 11