Overexpression of Saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants

Autoři: Xinyong Guo aff001;  Li Zhang aff001;  Xiaozhen Wang aff001;  Minhuan Zhang aff001;  Yuxin Xi aff001;  Aiying Wang aff001;  Jianbo Zhu aff001
Působiště autorů: Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225090


Dehydrins are late embryogenesis abundant proteins that help regulate abiotic stress responses in plants. Overexpression of the Saussurea involucrata dehydrin gene SiDHN has previously been shown to improve water-use efficiency and enhance cold and drought tolerance of transgenic tobacco. To understand the mechanism by which SiDHN exerts its protective function, we transformed the SiDHN gene into tomato plants (Solanum lycopersicum L.) and assessed their response to abiotic stress. We observed that in response to stresses, the SiDHN transgenic tomato plants had increased contents of chlorophyll a and b, carotenoid and relative water content compared with wild-type plants. They also had higher maximal photochemical efficiency of photosystem II and accumulated more proline and soluble sugar. Compared to those wild-type plants, malondialdehyde content and relative electron leakage in transgenic plants were not significantly increased, and H2O2 and O2- contents in transgenic tomato plants were significantly decreased. We further observed that the production of stress-related antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, peroxidase, and catalase, as well as pyrroline-5-carboxylate synthetase and lipid transfer protein 1, were up-regulated in the transgenic plants under cold and drought stress. Based on these observations, we conclude that overexpression of SiDHN gene can promote cold and drought tolerance of transgenic tomato plants by inhibiting cell membrane damage, protecting chloroplasts, and enhancing the reactive oxygen species scavenging capacity. The finding can be beneficial for the application of SiDHN gene in improving crop tolerance to abiotic stress and oxidative damage.

Klíčová slova:

Gene expression – Genetically modified plants – Chlorophyll – Leaves – Plant physiology – Plant resistance to abiotic stress – Thermal stresses – Tomatoes


1. Wang HS, Yu C, Zhu ZJ, Yu XC. Overexpression in tobacco of a tomato GMPase gene improves tolerance to both low and high temperature stress by enhancing antioxidation capacity. Plant Cell Rep. 2011;30:1029–1040. doi: 10.1007/s00299-011-1009-y 21287174

2. Yordanov I, Velikova V, Tsonev T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica. 2000;38:171–186.

3. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/s1360-1385(02)02312-9 12234732

4. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701 15377225

5. Hara M. The multifunctionality of dehydrins: an overview. Plant Signal Behav. 2010;5:503–508. doi: 10.4161/psb.11085 20139737

6. Graether SP, Boddington KF. Disorder and function: a review of the dehydrin protein family. Front. Plant. Sci. 2014;5:576. doi: 10.3389/fpls.2014.00576 25400646

7. Eriksson SK, Harryson P. Dehydrins: molecular biology, structure and function, in: Lüttge U., Beck E., Bartels D. (Eds.), Plant Desiccation Tolerance. Springer, Berlin, Heidelberg. 2011;289–305.

8. Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal. Behav. 2011;6:1503–1509. doi: 10.4161/psb.6.10.17088 21897131

9. Close TJ. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 1996;97:795–803.

10. Lv A, Fan N, Xie J, Yuan S, An Y, Zhou P. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway. Front Plant Sci. 2017;8:748. doi: 10.3389/fpls.2017.00748 28559903

11. Kovacs D, Kalmar E, Torok Z, Tompa P. Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol. 2008;147:381–390. doi: 10.1104/pp.108.118208 18359842

12. Eriksson SK, Kutzer M, Procek J, Grobner G, Harryson P. Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein. Plant Cell. 2011;23:2391–2404. doi: 10.1105/tpc.111.085183 21665998

13. Rahman LN, McKay F, Giuliani M, Quirk A, Moffatt BA, Harauz G, Dutcher JR. Interactions of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes at cold and ambient temperatures-surface morphology and single-molecule force measurements show phase separation, and reveal tertiary and quaternary associations. Biochim. Biophys. Acta. 2013;1828:967–980. doi: 10.1016/j.bbamem.2012.11.031 23219803

14. Hara M, Terashima S, Fukaya T, Kuboi T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta. 2003;217:290–298. doi: 10.1007/s00425-003-0986-7 12783337

15. Zhang Y, Li J, Yu F, Cong L, Wang L, Burkard G, et al. Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals. Mol. Biotechnol. 2006;32:205–217. doi: 10.1385/MB:32:3:205 16632887

16. Halder T, Agarwal T, Ray S. Isolation, cloning, and characterization of a novel Sorghum dehydrin (SbDhn2) protein. Protoplasma. 2016;253:1475–1488. doi: 10.1007/s00709-015-0901-7 26536883

17. Halder T, Upadhyaya G, Ray S. YSK2 type dehydrin (SbDhn1) from Sorghum bicolor showed improved protection under high temperature and osmotic stress condition. Front. Plant Sci. 2017;8:918. doi: 10.3389/fpls.2017.00918 28611819

18. Halder T, Upadhyaya G, Basak C, Das A, Chakraborty C, Ray S. Dehydrins impart protection against oxidative stress in transgenic tobacco plants. Front. Plant. Sci. 2018;9:136. doi: 10.3389/fpls.2018.00136 29491874

19. Jing H, Li C, Ma F, Ma JH, Khan A, Wang X, et al. Genome-Wide Identification, Expression Diversication of Dehydrin Gene Family and Characterization of CaDHN3 in Pepper (Capsicum annuum L.). PLoS One. 2016;11:e0161073 doi: 10.1371/journal.pone.0161073 27551973

20. Liu Y, Wang L, Zhang T, Yang X, Li D. Functional characterization of KS-type dehydrin ZmDHN13 and its related conserved domains under oxidative stress. Sci. Rep. 2017;7:7361. doi: 10.1038/s41598-017-07852-y 28779129

21. Cao Y, Xiang X, Geng M, You Q, Huang X. Effect of HbDHN1 and HbDHN2 genes on abiotic stress responses in Arabidopsis. Front. Plant. Sci. 2017;8:470. doi: 10.3389/fpls.2017.00470 28443102

22. Guo XY, Zhang L, Zhu JB, Liu HL, Wang AY. Cloning and characterization of SiDHN, a novel dehydrin gene from Saussurea involucrata Kar. et Kir. that enhances cold and drought tolerance in tobacco. Plant Sci. 2017;256:160–169. doi: 10.1016/j.plantsci.2016.12.007 28167030

23. Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, et al. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Science. 2015;231:198–211. doi: 10.1016/j.plantsci.2014.12.006 25576005

24. Zhu MK, Chen GP, Zhou S, Tu Y, Wang Y, Dong TT, Hu ZL. New tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, function as a positive regulator of fruit ripening and carotenoid accumulation. Plant & cell physiology. 2013.

25. Hsieh AY, Saberi S, Ajaykumar A, Hukezalie K, Gadawski I, Sattha B, et al. Optimization of a Relative Telomere Length Assay by Monochromatic Multiplex Real-Time Quantitative PCR on the LightCycler 480: Sources of Variability and Quality Control Considerations. Journal of Molecular Diagnostics. 2016;18:425–437. doi: 10.1016/j.jmoldx.2016.01.004 26972047

26. Lovdal T, Lillo C. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal. Biochem. 2009;387:238–242. doi: 10.1016/j.ab.2009.01.024 19454243

27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262 11846609

28. Zhu JB, Liu HL, Wang Z, Zhou P. Construction of full-length cDNA library from the Saussurea involucrata Kar.et Kir laminae. Acta Agric.Boreali-Occident. Sin. 2006.

29. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols. 2015;10:845–858. doi: 10.1038/nprot.2015.053 25950237

30. Higgins DG. and Sharp PM. Fast and Sensitive Multiple Sequence Alignments on a Microcomputer. Computer Applications in the Biosciences. 1989;5:151. doi: 10.1093/bioinformatics/5.2.151 2720464

31. Sigrist CJA, Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, et al. Bougueleret L, Xenarios I. New and continuing developments at PROSITE. Nucleic Acids Res. 2012.

32. Gallois P. and Marinho P. Leaf disk transformation using Agrobacterium tumefaciens-expression of heterologous genes in tobacco. Methods Mol. Biol. 1995;49:39–48. doi: 10.1385/0-89603-321-X:39 8563823

33. Pino LE, Lombardi-Crestana S, Azevedo MS, Scotton DC, Borgo L, Quecini V, et al. The Rg1 allele as a valuable toolfor genetic transformation of the tomato ‘Micro-Tom’ model system. Plant Methods. 2010;6:23. doi: 10.1186/1746-4811-6-23 20929550

34. Chen RG, Hing H, Guo WL, Wang SB, Ma F, Pan BG, Gong ZH. Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L. Plant Cell Reports. 2015;34:2189–2200. doi: 10.1007/s00299-015-1862-1 26408144

35. Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR. Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One. 2014;9.

36. Lara MV, Disante KB, Podestá FE, Andreo CS, Drincovich MF. Induction ofa Crassulacean acid like metabolism in the C4 succulent plant, Portulacaoleracea L.: physiological and morphological changes are accompanied byspecific modifications in phosphoenolpyruvate carboxylase. Photosynth. Res. 2003;77:241–254. doi: 10.1023/A:1025834120499 16228379

37. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012;12:1–26.

38. Du Z, Bramlage WJ. Modified thiobarbituric acid assay for measuring lipidoxidation in sugar-rich plant tissue extracts. J. Agric. Food Chem. 1992;40:1566–1570.

39. Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S. et al. Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tiss Organ Cult. 2010;103:267–277.

40. Pokorska B, Zienkiewicz M, Powikrowska M, Drozak A, Romanowska E. Difffferential turnover of the photosystem II reaction centre D1 protein in mesophyll and bundle sheath chloroplasts of maize. Biochim. Biophys. Acta. 2009;1787:1161–1169. doi: 10.1016/j.bbabio.2009.05.002 19450540

41. Krause G, Weis E. Chlorophyll Fluorescence and Photosynthesis: The Basics. Annual Review of Plant Physiology. 1991;42:313–349.

42. Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol. 2007;164:157–167. doi: 10.1016/j.jplph.2005.12.004 16500726

43. Szabados L, Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010;15:89–97. doi: 10.1016/j.tplants.2009.11.009 20036181

44. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant and soil. 1973;1:205–207.

45. Fukao T, Xu K, Ronald PC, Bailey-Serres J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell. 2006;18:2021–2034. doi: 10.1105/tpc.106.043000 16816135

46. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate‐specific peroxidase in spinach chloroplast. Plant Cell Physiol. 1981;22:860–867.

47. Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology. 1992;98:1222–1227. doi: 10.1104/pp.98.4.1222 16668779

48. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry.1971;44:276–287. doi: 10.1016/0003-2697(71)90370-8 4943714

49. Doerge DR, Rao LD, Churchwell MI. Identification of the Colored Guaiacol Oxidation Product Produced by Peroxidases. Analytical Biochemistry. 1997;250:10–17. doi: 10.1006/abio.1997.2191 9234893

50. Benikhlef L, L’Haridon F, Aboumansour E, Serrano M, Binda M, Costa A, et al. Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance. BMC Plant Biology. 2013;13:1–12. doi: 10.1186/1471-2229-13-1

51. Mouillon JM, Gustafsson P, Harryson P. Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiol. 2006;141:638–650. doi: 10.1104/pp.106.079848 16565295

52. Foyer C, Lelandais M, Galap C, Kunert KJ. Effect of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiology. 1991;97:863–872. doi: 10.1104/pp.97.3.863 16668524

53. Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology. 1998;49:249–279. doi: 10.1146/annurev.arplant.49.1.249 15012235

54. Foyer CH, Noctor G. Oxygen processing in photosynthesis: regulation and signaling. New Phytologist. 2000;146:359–388.

55. Nylander M, Svensson J, Palva E T, Welin B V. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol, 2001, 45: 263–279. doi: 10.1023/a:1006469128280 11292073

56. Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Phys. 1998;116:173−181.

57. Brini F, Hanin M, Lumbreras V, Irar S, Pagès M, Masmoudi K. Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci. 2007;172:20–28.

58. Shekhawat UK, Srinivas L, Ganapathi TR. MusaDHN-1, a novel multiple stress-inducible SK(3)-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta. 2011;234:915–932. doi: 10.1007/s00425-011-1455-3 21671068

59. Bradley EL, Brent MB, Tripepi MS, Bitonti BM, Dollahon MNR, Balsamo RA. Dehydration-induced expression of a 31-kDa dehydrin in Polypodium polypodioides (Polypodiaceae) may enable large, reversible deformation of cell walls. Am J Bot. 2010;97:535–544. doi: 10.3732/ajb.0900285 21622416

60. Mittler R, Vanderauwera S, Gollery M, Van Breusege F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–498. doi: 10.1016/j.tplants.2004.08.009 15465684

61. Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Molinari HB, Marur CJ, et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol. 2007;164:1367–1376. doi: 10.1016/j.jplph.2007.05.001 17604875

62. Sommerville CR, Browse J. Plant lipids: metabolism, mutants, and membranes. Science. 1991;252:80–87. doi: 10.1126/science.252.5002.80 17739077

63. Kader JC. Lipid-transfer proteins in plants. Ann Rev Plant Physiol Plant Mol Biol. 1996;47:627–654.

64. Guo L, Yang H, Zhang X, Yang S. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J. Exp. Bot. 2013;64:1755–1767. doi: 10.1093/jxb/ert040 23404903

65. Safi H, Saibi W, Alaoui MM, Hmyene A, Masmoudi K, Hanin M, et al. A wheat lipid transfer protein (TDLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. Plant Physiol. Biochem. 2015;89C:64–75.

Článek vyšel v časopise


2019 Číslo 11