Diagnostic ability of multifocal electroretinogram in early multiple sclerosis using a new signal analysis method


Autoři: L. Boquete aff001;  E. López-Guillén aff001;  E. Vilades aff002;  J. M. Miguel-Jiménez aff001;  L. E. Pablo aff003;  L. De Santiago aff001;  M. Ortiz del Castillo aff001;  M. C. Alonso-Rodríguez aff005;  E. M. Sánchez Morla aff006;  A. López-Dorado aff001;  E. Garcia-Martin aff002
Působiště autorů: Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain aff001;  RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Madrid, Spain aff002;  Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain aff003;  Aragon Institute for Health Research (IIS Aragon), Innovative and Research Group Miguel Servet Ophthalmology (GIMSO), University of Zaragoza, Zaragoza, Spain aff004;  Physics and Mathematics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain aff005;  Institute for Health Research 12 de Octubre Hospital (i+12), Madrid, Spain aff006
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224500

Souhrn

Purpose

To determine if a novel analysis method will increase the diagnostic value of the multifocal electroretinogram (mfERG) in diagnosing early-stage multiple sclerosis (MS).

Methods

We studied the mfERG signals of OD (Oculus Dexter) eyes of fifteen patients diagnosed with early-stage MS (in all cases < 12 months) and without a history of optic neuritis (ON) (F:M = 11:4), and those of six controls (F:M = 3:3). We obtained values of amplitude and latency of N1 and P1 waves, and a method to assess normalized root-mean-square error (FNRMSE) between model signals and mfERG recordings was used. Responses of each eye were analysed at a global level, and by rings, quadrants and hemispheres. AUC (area under the ROC curve) is used as discriminant factor.

Results

The standard method of analysis obtains further discrimination between controls and MS in ring R3 (AUC = 0.82), analysing N1 waves amplitudes. In all of the retina analysis regions, FNRMSE value shows a greater discriminating power than the standard method. The highest AUC value (AUC = 0.91) was in the superior temporal quadrant.

Conclusion

By analysing mfERG recordings and contrasting them with those of healthy controls it is possible to detect early-stage MS in patients without a previous history of ON.

Klíčová slova:

Diagnostic medicine – Eyes – Magnetic resonance imaging – Multiple sclerosis – Ophthalmology – Retina – Vision – Visual acuity


Zdroje

1. Lai TYY, Chan W-M, Lai RYK, Ngai JWS, Li H, Lam DSC. The Clinical Applications of Multifocal Electroretinography: A Systematic Review. Surv Ophthalmol. 2007;52: 61–96. doi: 10.1016/j.survophthal.2006.10.005 17212991

2. Chan HH-L, Ng Y, Chu PH. Applications of the multifocal electroretinogram in the detection of glaucoma. Clin Exp Optom. 2011;94: 247–58. doi: 10.1111/j.1444-0938.2010.00571.x 21323730

3. Robson AG, Nilsson J, Li S, Jalali S, Fulton AB, Tormene AP, et al. ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol. 2018;136: 1–26. doi: 10.1007/s10633-017-9621-y

4. Müller PL, Meigen T. M-sequences in ophthalmic electrophysiology. J Vis. 2016;16: 15. doi: 10.1167/16.1.15

5. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol. 2012;124: 1–13. doi: 10.1007/s10633-011-9296-8

6. Kaunzner UW, Gauthier SA. MRI in the assessment and monitoring of multiple sclerosis: an update on best practice. Ther Adv Neurol Disord. 2017;10: 247–261. doi: 10.1177/1756285617708911 28607577

7. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17: 162–173. doi: 10.1016/S1474-4422(17)30470-2 29275977

8. Hardmeier M, Leocani L, Fuhr P. A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult Scler J. 2017;23: 1309–1319. doi: 10.1177/1352458517707265

9. Giffroy X, Maes N, Albert A, Maquet P, Crielaard J-M, Dive D. Multimodal evoked potentials for functional quantification and prognosis in multiple sclerosis. BMC Neurol. 2016;16: 83. doi: 10.1186/s12883-016-0608-1 27245221

10. Canham LJW, Kane N, Oware A, Walsh P, Blake K, Inglis K, et al. Multimodal neurophysiological evaluation of primary progressive multiple sclerosis–An increasingly valid biomarker, with limits. Mult Scler Relat Disord. 2015;4: 607–613. doi: 10.1016/j.msard.2015.07.009 26590670

11. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol. 2011;69: 292–302. doi: 10.1002/ana.22366 21387374

12. Kretschmann U, Seeliger M, Ruether K, Usui T, Zrenner E. Spatial cone activity distribution in diseases of the posterior pole determined by multifocal electroretinography. Vision Res. 1998;38: 3817–3828. doi: 10.1016/s0042-6989(98)00071-6 9893810

13. Gundogan FC, Demirkaya S, Sobaci G. Is Optical Coherence Tomography Really a New Biomarker Candidate in Multiple Sclerosis?—A Structural and Functional Evaluation. Investig Opthalmology Vis Sci. 2007;48: 5773. doi: 10.1167/iovs.07-0834

14. Saidha S, Syc SB, Ibrahim MA, Eckstein C, Warner C V., Farrell SK, et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain. 2011;134: 518–533. doi: 10.1093/brain/awq346 21252110

15. Neroev V V., Eliseeva EK, Zueva M V., Lysenko VS, Zakharova MN, Tsapenko I V., et al. Demyelinating optic neuritis: Optical coherence tomography and multifocal electroretinography data correlation. Hum Physiol. 2016;42: 879–884. doi: 10.1134/S0362119716080090

16. Hanson JVM, Hediger M, Manogaran P, Landau K, Hagenbuch N, Schippling S, et al. Outer Retinal Dysfunction in the Absence of Structural Abnormalities in Multiple Sclerosis. Investig Opthalmology Vis Sci. 2018;59: 549. doi: 10.1167/iovs.17-22821

17. Garcia-Martin E, Pueyo V, Almarcegui C, Martin J, Ara JR, Sancho E, et al. Risk factors for progressive axonal degeneration of the retinal nerve fibre layer in multiple sclerosis patients. Br J Ophthalmol. 2011;95: 1577–82. doi: 10.1136/bjo.2010.199232 21785155

18. Garcia-Martin E, Ara JR, Martin J, Almarcegui C, Dolz I, Vilades E, et al. Retinal and Optic Nerve Degeneration in Patients with Multiple Sclerosis Followed up for 5 Years. Ophthalmology. 2017;124: 688–696. doi: 10.1016/j.ophtha.2017.01.005 28187977

19. Garcia-Martin E, Pablo LE, Herrero R, Satue M, Polo V, Larrosa JM, et al. Diagnostic Ability of a Linear Discriminant Function for Spectral-Domain Optical Coherence Tomography in Patients with Multiple Sclerosis. Ophthalmology. 2012;119: 1705–1711. doi: 10.1016/j.ophtha.2012.01.046 22480742

20. Brusini P. OCT Glaucoma Staging System: a new method for retinal nerve fiber layer damage classification using spectral-domain OCT. Eye. 2018;32: 113–119. doi: 10.1038/eye.2017.159 28776589

21. Mousa MF, Cubbidge RP, Al-Mansouri F, Bener A. Evaluation of hemifield sector analysis protocol in multifocal visual evoked potential objective perimetry for the diagnosis and early detection of glaucomatous field defects. Korean J Ophthalmol. 2014;28: 49–65. doi: 10.3341/kjo.2014.28.1.49 24511212

22. Satue M, Obis J, Alarcia R, Orduna E, Rodrigo MJ, Vilades E, et al. Retinal and Choroidal Changes in Patients with Parkinson’s Disease Detected by Swept-Source Optical Coherence Tomography. Curr Eye Res. 2018;43: 109–115. doi: 10.1080/02713683.2017.1370116 29111842

23. Polo V, Garcia-Martin E, Bambo MP, Pinilla J, Larrosa JM, Satue M, et al. Reliability and validity of Cirrus and Spectralis optical coherence tomography for detecting retinal atrophy in Alzheimer’s disease. Eye. 2014;28: 680–690. doi: 10.1038/eye.2014.51 24625377


Článek vyšel v časopise

PLOS One


2019 Číslo 11