Validation of the group tasks uncertainty model (MITAG) in a German sample


Autoři: Jan-Paul Leuteritz aff001;  José Navarro aff002;  Rita Berger aff002
Působiště autorů: Ergonomics and Vehicle Interaction, Fraunhofer-Institute for Industrial Engineering (IAO), Stuttgart, Germany aff001;  Departamento de Psicología Social y Psicología Cuantitativa, Universitat de Barcelona, Barcelona, Spain aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224485

Souhrn

Task uncertainty is a key factor in teamwork research. This study analyzed the psychometric characteristics of the Spanish Model of Group Tasks Uncertainty (MITAG) in two German samples. The participants (501 team members and 104 team leaders from a German research organization) answered the MITAG together with selected items from the German Job Diagnostic Survey (JDS) and the instrument Ambiguity facets of work (Ambiguitätsfacetten der Arbeit, AfA). Confirmatory factor analysis did not reproduce the original 4-factor structure in the German sample, although the 3 newly identified factors unclarity of goals, new situations, and non-routine resemble the original factors. Results showed sound internal consistency and confirmed the convergent and discriminant validity of the new factors. The MITAG offers a concept-based short scale for researchers and practitioners.

Klíčová slova:

Culture – Employment – Factor analysis – German people – Jobs – Psychometrics – Research validity – Spanish people


Zdroje

1. Navarro J, Quijano SD de, Berger R, Meneses R (2011) Grupos en las organizaciones: Herramienta básica para gestionar la incertidumbre y ambigüedad crecientes [Work-groups in organizations: A basic tool to manage increasing complexity and ambiguity]. Papeles del Psicólogo 32 (1): 17–28.

2. Weiss M, Hoegl M (2016) Effects of relative team size on teams with innovative tasks. An understaffing theory perspective. Organizational Psychology Review 6 (4): 324–351.

3. Faraj S, Yan A (2009) Boundary work in knowledge teams. Journal of Applied Psychology 94 (3): 604–617. doi: 10.1037/a0014367 19450002

4. Gardner HK, Gino F, Staats BR (2012) Dynamically integrating knowledge in teams. Transforming resources into performance. Academy of Management Journal 55 (4): 998–1022.

5. Sicotte H, Bourgault M (2008) Dimensions of uncertainty and their moderating effect on new product development project performance. R&D Management 38 (5): 468–479.

6. Um K-H, Kim S-M (2018) Collaboration and opportunism as mediators of the relationship between NPD project uncertainty and NPD project performance. International Journal of Project Management 36 (4): 659–672.

7. Perrow C (1967) A framework for the comparative analysis of organizations. American Sociological Review 32 (2): 194–208.

8. Ven AH van de, Ferry DI (1980) Measuring and assessing organizations. New York, NY: Wiley.

9. Dingsøyr T, Moe NB, Seim EA (2018) Coordinating Knowledge Work in Multiteam Programs. Project Management Journal 49 (6): 64–77.

10. Ven AH van de, Delbecq AL, Koenig R (1976) Determinants of coordination modes within organizations. American Sociological Review 41 (2): 322–338.

11. Withey M, Daft RL, Cooper WH (1983) Measures of Perrow 's work unit technology. An empirical assessment and a new scale. Academy of Management Journal 26 (1): 45–63.

12. Ven AH van de, Delbecq AL (1974) The effectiveness of nominal, delphi, and interacting group decision making processes. Academy of Management Journal 17 (4): 605–621.

13. Nidumolu S (1995) The effect of coordination and uncertainty on software project performance. Residual performance risk as an intervening variable. Information Systems Research 6 (3): 191–219.

14. Navarro J, Díez E, Gómez F, Meneses R, Quijano SD de (2008) Incertidumbre de las tareas de grupo. Propuesta de un modelo y validación empírica [Group-task uncertainty. Proposition of a model and empirical validation]. Revista de Psicología Social 23 (2): 259–273.

15. McGrath JE (1984) Groups, interaction and performance. Englewood Cliffs, N.J.: Prentice-Hall. 286 p.

16. Campbell DJ (1988) Task complexity. A review and analysis. Academy of Management Review 13 (1): 40–52.

17. Ferràs M (2009) Validación de la herramienta propuesta en el modelo de incertidumbre de las tareas de grupo -MITAG- [Validation of the instrument proposed in the group tasks uncertainty model -MITAG-]. Spain.

18. ITC (2005) ITC Guidelines for Translating and Adapting Tests. Version 1.0. Available: https://www.intestcom.org/. Accessed 13 August 2019.

19. Hofstede GH, Hofstede GJ, Minkov M (2010) Cultures and organizations. Software of the mind; intercultural cooperation and its importance for survival. New York, NY: McGraw-Hill. 561 p.

20. Rizzo JR, House RJ, Lirtzman SI (1970) Role conflict and ambiguity in complex organizations. Administrative Science Quarterly 15 (2): 150.

21. Schmidt K-H, Hollmann S (1998) Eine deutschsprachige Skala zur Messung verschiedener Ambiguitätsfacetten bei der Arbeit [A German language scale to measure different facets of ambiguity at work]. Diagnostica 44 (1): 21–29.

22. Schmidt K-H, Kleinbeck U, Ottmann W, Seidel B (1985) Ein Verfahren zur Diagnose von Arbeitsinhalten: Der Job Diagnostic Survey (JDS) [A method for the diagnosis of work contents: the Job Diagnostic Survey (JDS)]. Zeitschrift für Arbeits- und Organisationspsychologie A&O 29: 162–172.

23. ITC (2017) The ITC guidelines for translating and adapting tests (second edition). Version 2.4. Available: https://www.intestcom.org/. Accessed 2 November 2018.

24. Tyupa S (2011) A theoretical framework for back-translation as a quality assessment tool. New Voices in Translation Studies (7): 35–46. Available: https://core.ac.uk/download/pdf/53121361.pdf. Accessed 13 August 2019.

25. Steiger JH (1990) Structural model evaluation and modification. An interval estimation approach. Multivariate behavioral research 25 (2): 173–180. doi: 10.1207/s15327906mbr2502_4 26794479

26. Bollen KA (1989) A new incremental fit index for general structural equation models. Sociological Methods & Research 17 (3): 303–316.

27. Bentler PM (1990) Comparative fit indexes in structural models. Psychological Bulletin 107 (2): 238–246. doi: 10.1037/0033-2909.107.2.238 2320703

28. Kenny DA (2016) Measuring model fit. Available: http://davidakenny.net/cm/fit.htm. Accessed 25 June 2016.

29. Gaskin J (2012) Validity master, stats tools package. Available: http://statwiki.kolobkreations.com. Accessed 6 June 2015.

30. Hu L, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis. Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6 (1): 1–55.

31. Schumacker RE, Lomax RG (2004) A beginner's guide to structural equation modeling. Mahwah, NJ: Lawrence Erlbaum Associates.

32. Bentler PM, Bonett DG (1980) Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin 88 (3): 588–606.

33. Arbuckle JL (2013) IBM SPSS Amos 22 User’s Guide. Armonk, NY: IBM Corp.

34. Fornell C, Larcker DF (1981) Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research 18 (1): 39.

35. Cheung GW, Rensvold RB (2002) Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal 9 (2): 233–255.


Článek vyšel v časopise

PLOS One


2019 Číslo 11