Home-cage monitoring ascertains signatures of ictal and interictal behavior in mouse models of generalized seizures


Autoři: Miranda J. Jankovic aff001;  Paarth P. Kapadia aff001;  Vaishnav Krishnan aff001
Působiště autorů: Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224856

Souhrn

Epilepsy is a significant contributor to worldwide disability. In epilepsy, disability can be broadly divided into two components: ictal (pertaining to the burden of unpredictable seizures and associated medical complications including death) and interictal (pertaining to more pervasive debilitating changes in cognitive and emotional behavior). In this study, we objectively and noninvasively appraise aspects of ictal and interictal behavior in mice using instrumented home-cage chambers designed to assay kinematic and appetitive behavioral measures. Through daily intraperitoneal injections of the chemoconvulsant pentylenetetrazole (PTZ) applied to C57BL/6J mice, we coordinately measure how “behavioral severity” (complex dynamic changes in movement and sheltering behavior) and convulsive severity (latency and occurrence of convulsive seizures) evolve or kindle with repeated injections. By closely studying long epochs between PTZ injections, we identify an interictal syndrome of nocturnal hypoactivity and increased sheltering behavior which remits with the cessation of seizure induction. We observe elements of this interictal behavioral syndrome in seizure-prone DBA/2J mice and in mice with a pathogenic Scn1a mutation (modeling Dravet syndrome). Through analyzing their responses to PTZ, we illustrate how convulsive severity and “behavioral” severity are distinct and independent aspects of the overall severity of a PTZ-induced seizure. Our results illustrate the utility of an ethologically centered automated approach to quantitatively appraise murine expressions of disability in mouse models of seizures and epilepsy. In doing so, this study highlights the very unique psychopharmacological profile of PTZ.

Klíčová slova:

Animal behavior – Behavior – Biological locomotion – Epilepsy – Mice – Mouse models – Sleep – Convulsions


Zdroje

1. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475–82. Epub 2014/04/16. doi: 10.1111/epi.12550 24730690.

2. Collaborators GBDE. Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(4):357–75. Epub 2019/02/19. doi: 10.1016/S1474-4422(18)30454-X 30773428; PubMed Central PMCID: PMC6416168.

3. Whiteford HA, Ferrari AJ, Degenhardt L, Feigin V, Vos T. The global burden of mental, neurological and substance use disorders: an analysis from the Global Burden of Disease Study 2010. PLoS One. 2015;10(2):e0116820. Epub 2015/02/07. doi: 10.1371/journal.pone.0116820 25658103; PubMed Central PMCID: PMC4320057.

4. Kwan P, Yu E, Leung H, Leon T, Mychaskiw MA. Association of subjective anxiety, depression, and sleep disturbance with quality-of-life ratings in adults with epilepsy. Epilepsia. 2009;50(5):1059–66. Epub 2009/01/28. doi: 10.1111/j.1528-1167.2008.01938.x 19170734.

5. Sajobi TT, Jette N, Fiest KM, Patten SB, Engbers JD, Lowerison MW, et al. Correlates of disability related to seizures in persons with epilepsy. Epilepsia. 2015;56(9):1463–9. Epub 2015/08/01. doi: 10.1111/epi.13102 26230669.

6. Kanner AM. The treatment of depressive disorders in epilepsy: what all neurologists should know. Epilepsia. 2013;54 Suppl 1:3–12. Epub 2013/03/15. doi: 10.1111/epi.12100 23458461.

7. Koch-Stoecker SC, Bien CG, Schulz R, May TW. Psychiatric lifetime diagnoses are associated with a reduced chance of seizure freedom after temporal lobe surgery. Epilepsia. 2017;58(6):983–93. Epub 2017/04/06. doi: 10.1111/epi.13736 28378900.

8. Long C, Fureman B, Dingledine R. 2014 Epilepsy Benchmarks: Progress and Opportunities. Epilepsy Curr. 2016;16(3):179–81. Epub 2016/06/23. doi: 10.5698/1535-7511-16.3.179 27330449; PubMed Central PMCID: PMC4913855.

9. Holmes GL, Noebels JL. The Epilepsy Spectrum: Targeting Future Research Challenges. Cold Spring Harb Perspect Med. 2016;6(7). Epub 2016/07/03. doi: 10.1101/cshperspect.a028043 27371672; PubMed Central PMCID: PMC4930917.

10. Fukata Y, Lovero KL, Iwanaga T, Watanabe A, Yokoi N, Tabuchi K, et al. Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc Natl Acad Sci U S A. 2010;107(8):3799–804. Epub 2010/02/06. doi: 10.1073/pnas.0914537107 20133599; PubMed Central PMCID: PMC2840530.

11. Yuskaitis CJ, Jones BM, Wolfson RL, Super CE, Dhamne SC, Rotenberg A, et al. A mouse model of DEPDC5-related epilepsy: Neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility. Neurobiol Dis. 2018;111:91–101. Epub 2017/12/24. doi: 10.1016/j.nbd.2017.12.010 29274432; PubMed Central PMCID: PMC5803417.

12. Loscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359–68. Epub 2011/02/05. doi: 10.1016/j.seizure.2011.01.003 21292505.

13. Huang RQ, Bell-Horner CL, Dibas MI, Covey DF, Drewe JA, Dillon GH. Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. J Pharmacol Exp Ther. 2001;298(3):986–95. Epub 2001/08/16. 11504794.

14. Ajmone-Marsan C, Ralston BL. The Epileptic Seizure: Its Functional Morphology and Diagnostic Significance. A Clinical-electrographic Analysis of Metrazol-Induced Attacks. Springfield, IL: Charles C Thomas; 1957.

15. Ferraro TN, Golden GT, Smith GG, St Jean P, Schork NJ, Mulholland N, et al. Mapping loci for pentylenetetrazol-induced seizure susceptibility in mice. J Neurosci. 1999;19(16):6733–9. Epub 1999/08/06. doi: 10.1523/JNEUROSCI.19-16-06733.1999 10436030.

16. Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci. 2012;Chapter 9:Unit9 37. Epub 2012/10/09. doi: 10.1002/0471142301.ns0937s58 23042503.

17. Watanabe Y, Kaida Y, Fukuhara S, Takechi K, Uehara T, Kamei C. Participation of metabotropic glutamate receptors in pentetrazol-induced kindled seizure. Epilepsia. 2011;52(1):140–50. Epub 2010/11/09. doi: 10.1111/j.1528-1167.2010.02764.x 21054350.

18. Watanabe Y, Takechi K, Fujiwara A, Kamei C. Effects of antiepileptics on behavioral and electroencephalographic seizure induced by pentetrazol in mice. Journal of pharmacological sciences. 2010;112(3):282–9. Epub 2010/02/20. doi: 10.1254/jphs.09225fp 20168048.

19. Krishnan V, Stoppel DC, Nong Y, Johnson MA, Nadler MJ, Ozkaynak E, et al. Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1. Nature. 2017;543(7646):507–12. Epub 2017/03/16. doi: 10.1038/nature21678 28297715; PubMed Central PMCID: PMC5364052.

20. Mizoguchi H, Nakade J, Tachibana M, Ibi D, Someya E, Koike H, et al. Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci. 2011;31(36):12963–71. Epub 2011/09/09. doi: 10.1523/JNEUROSCI.3118-11.2011 21900575.

21. Sansig G, Bushell TJ, Clarke VR, Rozov A, Burnashev N, Portet C, et al. Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. J Neurosci. 2001;21(22):8734–45. Epub 2001/11/08. doi: 10.1523/JNEUROSCI.21-22-08734.2001 11698585.

22. Van Erum J, Van Dam D, De Deyn PP. PTZ-induced seizures in mice require a revised Racine scale. Epilepsy Behav. 2019;95:51–5. Epub 2019/04/27. doi: 10.1016/j.yebeh.2019.02.029 31026782.

23. Guignet M, Dhakal K, Flannery BM, Hobson BA, Zolkowska D, Dhir A, et al. Persistent behavior deficits, neuroinflammation, and oxidative stress in a rat model of acute organophosphate intoxication. Neurobiol Dis. 2019. Epub 2019/03/25. doi: 10.1016/j.nbd.2019.03.019 30905768.

24. Medel-Matus JS, Shin D, Sankar R, Mazarati A. Galanin contributes to monoaminergic dysfunction and to dependent neurobehavioral comorbidities of epilepsy. Exp Neurol. 2017;289:64–72. Epub 2016/12/26. doi: 10.1016/j.expneurol.2016.12.008 28013000; PubMed Central PMCID: PMC5285493.

25. Tatsukawa T, Raveau M, Ogiwara I, Hattori S, Miyamoto H, Mazaki E, et al. Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. Mol Autism. 2019;10:15. Epub 2019/04/10. doi: 10.1186/s13229-019-0265-5 30962870; PubMed Central PMCID: PMC6437867.

26. Peters SM, Pothuizen HH, Spruijt BM. Ethological concepts enhance the translational value of animal models. Eur J Pharmacol. 2015;759:42–50. Epub 2015/04/01. doi: 10.1016/j.ejphar.2015.03.043 25823814.

27. Loos M, Verhage M, Spijker S, Smit AB. Complex Genetics of Behavior: BXDs in the Automated Home-Cage. Methods Mol Biol. 2017;1488:519–30. Epub 2016/12/10. doi: 10.1007/978-1-4939-6427-7_25 27933542.

28. Loos M, Koopmans B, Aarts E, Maroteaux G, van der Sluis S, Neuro BMPC, et al. Sheltering behavior and locomotor activity in 11 genetically diverse common inbred mouse strains using home-cage monitoring. PLoS One. 2014;9(9):e108563. Epub 2014/09/30. doi: 10.1371/journal.pone.0108563 25264768; PubMed Central PMCID: PMC4180925.

29. Loos M, Koopmans B, Aarts E, Maroteaux G, van der Sluis S, Neuro BMPC, et al. Within-strain variation in behavior differs consistently between common inbred strains of mice. Mamm Genome. 2015;26(7–8):348–54. Epub 2015/07/01. doi: 10.1007/s00335-015-9578-7 26123533.

30. Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci. 2007;27(22):5903–14. Epub 2007/06/01. doi: 10.1523/JNEUROSCI.5270-06.2007 17537961.

31. Aiba I, Noebels JL. Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse SUDEP models. Sci Transl Med. 2015;7(282):282ra46. Epub 2015/04/10. doi: 10.1126/scitranslmed.aaa4050 25855492; PubMed Central PMCID: PMC4852131.

32. Nau H, Loscher W. Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and gamma-aminobutyric acid (GABA) metabolism in the mouse. J Pharmacol Exp Ther. 1982;220(3):654–9. Epub 1982/03/01. 6801254.

33. Kopp C, Rudolph U, Keist R, Tobler I. Diazepam-induced changes on sleep and the EEG spectrum in mice: role of the alpha3-GABA(A) receptor subtype. Eur J Neurosci. 2003;17(10):2226–30. Epub 2003/06/06. doi: 10.1046/j.1460-9568.2003.02651.x 12786990.

34. Goulding EH, Schenk AK, Juneja P, MacKay AW, Wade JM, Tecott LH. A robust automated system elucidates mouse home cage behavioral structure. Proc Natl Acad Sci U S A. 2008;105(52):20575–82. Epub 2008/12/25. doi: 10.1073/pnas.0809053106 19106295; PubMed Central PMCID: PMC2634928.

35. Fisher SP, Godinho SI, Pothecary CA, Hankins MW, Foster RG, Peirson SN. Rapid assessment of sleep-wake behavior in mice. Journal of biological rhythms. 2012;27(1):48–58. Epub 2012/02/07. doi: 10.1177/0748730411431550 22306973; PubMed Central PMCID: PMC4650254.

36. Pack AI, Galante RJ, Maislin G, Cater J, Metaxas D, Lu S, et al. Novel method for high-throughput phenotyping of sleep in mice. Physiol Genomics. 2007;28(2):232–8. Epub 2006/09/21. doi: 10.1152/physiolgenomics.00139.2006 16985007.

37. Dispersyn G, Sauvet F, Gomez-Merino D, Ciret S, Drogou C, Leger D, et al. The homeostatic and circadian sleep recovery responses after total sleep deprivation in mice. J Sleep Res. 2017;26(5):531–8. Epub 2017/04/21. doi: 10.1111/jsr.12541 28425172.

38. Mathews HL, Stitzel JA. The effects of oral nicotine administration and abstinence on sleep in male C57BL/6J mice. Psychopharmacology (Berl). 2018. Epub 2018/12/20. doi: 10.1007/s00213-018-5139-6 30564868.

39. Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE. Behavioral state instability in orexin knock-out mice. J Neurosci. 2004;24(28):6291–300. Epub 2004/07/16. doi: 10.1523/JNEUROSCI.0586-04.2004 15254084.

40. Farnworth B, Innes J, Waas JR. Converting Predation Cues into Conservation Tools: The Effect of Light on Mouse Foraging Behaviour. PLoS One. 2016;11(1):e0145432. Epub 2016/01/14. doi: 10.1371/journal.pone.0145432 26760039; PubMed Central PMCID: PMC4711984.

41. Singh E, Pillai KK, Mehndiratta M. Characterization of a lamotrigine-resistant kindled model of epilepsy in mice: evaluation of drug resistance mechanisms. Basic Clin Pharmacol Toxicol. 2014;115(5):373–8. Epub 2014/03/29. doi: 10.1111/bcpt.12238 24674593.

42. Pitsch J, Becker AJ, Schoch S, Muller JA, de Curtis M, Gnatkovsky V. Circadian clustering of spontaneous epileptic seizures emerges after pilocarpine-induced status epilepticus. Epilepsia. 2017;58(7):1159–71. Epub 2017/05/26. doi: 10.1111/epi.13795 28542864.

43. Wright S, Wallace E, Hwang Y, Maganti R. Seizure phenotypes, periodicity, and sleep-wake pattern of seizures in Kcna-1 null mice. Epilepsy Behav. 2016;55:24–9. Epub 2016/01/03. doi: 10.1016/j.yebeh.2015.11.028 26724401.

44. Pfammatter JA, Maganti RK, Jones MV. An automated, machine learning-based detection algorithm for spike-wave discharges (SWDs) in a mouse model of absence epilepsy. Epilepsia Open. 2019;4(1):110–22. Epub 2019/03/15. doi: 10.1002/epi4.12303 30868121; PubMed Central PMCID: PMC6398153.

45. Aarts E, Maroteaux G, Loos M, Koopmans B, Kovacevic J, Smit AB, et al. The light spot test: Measuring anxiety in mice in an automated home-cage environment. Behav Brain Res. 2015;294:123–30. Epub 2015/06/15. doi: 10.1016/j.bbr.2015.06.011 26072393.

46. Tang L, Ge L, Wu W, Yang X, Rui P, Wu Y, et al. Lamotrigine versus valproic acid monotherapy for generalised epilepsy: A meta-analysis of comparative studies. Seizure. 2017;51:95–101. Epub 2017/08/22. doi: 10.1016/j.seizure.2017.08.001 28826049.

47. Kadiyala SB, Papandrea D, Tuz K, Anderson TM, Jayakumar S, Herron BJ, et al. Spatiotemporal differences in the c-fos pathway between C57BL/6J and DBA/2J mice following flurothyl-induced seizures: A dissociation of hippocampal Fos from seizure activity. Epilepsy Res. 2015;109:183–96. Epub 2014/12/20. doi: 10.1016/j.eplepsyres.2014.11.009 25524858; PubMed Central PMCID: PMC4272448.

48. Wong AA, Brown RE. Visual detection, pattern discrimination and visual acuity in 14 strains of mice. Genes Brain Behav. 2006;5(5):389–403. Epub 2006/08/02. doi: 10.1111/j.1601-183X.2005.00173.x 16879633.

49. Bureau M, Dalla Bernardina B. Electroencephalographic characteristics of Dravet syndrome. Epilepsia. 2011;52 Suppl 2:13–23. Epub 2011/04/08. doi: 10.1111/j.1528-1167.2011.02996.x 21463274.

50. Steel D, Symonds JD, Zuberi SM, Brunklaus A. Dravet syndrome and its mimics: Beyond SCN1A. Epilepsia. 2017;58(11):1807–16. Epub 2017/09/08. doi: 10.1111/epi.13889 28880996.

51. Teran FA, Kim Y, Crotts MS, Bravo E, Emaus KJ, Richerson GB. Time of Day and a Ketogenic Diet Influence Susceptibility to SUDEP in Scn1a (R1407X/+) Mice. Front Neurol. 2019;10:278. Epub 2019/04/16. doi: 10.3389/fneur.2019.00278 30984098; PubMed Central PMCID: PMC6449461.

52. Ito S, Ogiwara I, Yamada K, Miyamoto H, Hensch TK, Osawa M, et al. Mouse with Nav1.1 haploinsufficiency, a model for Dravet syndrome, exhibits lowered sociability and learning impairment. Neurobiol Dis. 2013;49:29–40. Epub 2012/09/19. doi: 10.1016/j.nbd.2012.08.003 22986304.

53. Angelakos CC, Tudor JC, Ferri SL, Jongens TA, Abel T. Home-cage hypoactivity in mouse genetic models of autism spectrum disorder. Neurobiol Learn Mem. 2019. Epub 2019/02/24. doi: 10.1016/j.nlm.2019.02.010 30797034.

54. Bonasera SJ, Chaudoin TR, Goulding EH, Mittek M, Dunaevsky A. Decreased home cage movement and oromotor impairments in adult Fmr1-KO mice. Genes Brain Behav. 2017;16(5):564–73. Epub 2017/02/22. doi: 10.1111/gbb.12374 28218824; PubMed Central PMCID: PMC6042514.

55. Robinson L, Plano A, Cobb S, Riedel G. Long-term home cage activity scans reveal lowered exploratory behaviour in symptomatic female Rett mice. Behav Brain Res. 2013;250:148–56. Epub 2013/05/07. doi: 10.1016/j.bbr.2013.04.041 23643691; PubMed Central PMCID: PMC3885800.

56. Balci F, Oakeshott S, Shamy JL, El-Khodor BF, Filippov I, Mushlin R, et al. High-Throughput Automated Phenotyping of Two Genetic Mouse Models of Huntington's Disease. PLoS Curr. 2013;5. Epub 2013/07/19. doi: 10.1371/currents.hd.124aa0d16753f88215776fba102ceb29 23863947; PubMed Central PMCID: PMC3710674.

57. Remmelink E, Aartsma-Rus A, Smit AB, Verhage M, Loos M, van Putten M. Cognitive flexibility deficits in a mouse model for the absence of full-length dystrophin. Genes Brain Behav. 2016;15(6):558–67. Epub 2016/05/25. doi: 10.1111/gbb.12301 27220066.

58. Ambree O, Touma C, Gortz N, Keyvani K, Paulus W, Palme R, et al. Activity changes and marked stereotypic behavior precede Abeta pathology in TgCRND8 Alzheimer mice. Neurobiol Aging. 2006;27(7):955–64. Epub 2005/07/05. doi: 10.1016/j.neurobiolaging.2005.05.009 15993515.

59. Faizi M, Bader PL, Tun C, Encarnacion A, Kleschevnikov A, Belichenko P, et al. Comprehensive behavioral phenotyping of Ts65Dn mouse model of Down syndrome: activation of beta1-adrenergic receptor by xamoterol as a potential cognitive enhancer. Neurobiol Dis. 2011;43(2):397–413. Epub 2011/04/30. doi: 10.1016/j.nbd.2011.04.011 21527343; PubMed Central PMCID: PMC3539757.

60. Moe PG. Spike-wave stupor. Petit mal status. Am J Dis Child. 1971;121(4):307–13. Epub 1971/04/01. doi: 10.1001/archpedi.1971.02100150081008 4994507.

61. Tai P, Poochikian-Sarkissian S, Andrade D, Valiante T, del Campo M, Wennberg R. Postictal wandering is common after temporal lobe seizures. Neurology. 2010;74(11):932–3. Epub 2010/03/17. doi: 10.1212/WNL.0b013e3181d561b4 20231671.

62. Lightfoot JT, Leamy L, Pomp D, Turner MJ, Fodor AA, Knab A, et al. Strain screen and haplotype association mapping of wheel running in inbred mouse strains. J Appl Physiol (1985). 2010;109(3):623–34. Epub 2010/06/12. doi: 10.1152/japplphysiol.00525.2010 20538847; PubMed Central PMCID: PMC2944645.

63. Kyriakou EI, Nguyen HP, Homberg JR, Van der Harst JE. Home-cage anxiety levels in a transgenic rat model for Spinocerebellar ataxia type 17 measured by an approach-avoidance task: The light spot test. J Neurosci Methods. 2018;300:48–58. Epub 2017/08/22. doi: 10.1016/j.jneumeth.2017.08.012 28823507.

64. Angelakos CC, Watson AJ, O'Brien WT, Krainock KS, Nickl-Jockschat T, Abel T. Hyperactivity and male-specific sleep deficits in the 16p11.2 deletion mouse model of autism. Autism Res. 2017;10(4):572–84. Epub 2016/10/16. doi: 10.1002/aur.1707 27739237; PubMed Central PMCID: PMC6201314.

65. Volker LA, Maar BA, Pulido Guevara BA, Bilkei-Gorzo A, Zimmer A, Bronneke H, et al. Neph2/Kirrel3 regulates sensory input, motor coordination, and home-cage activity in rodents. Genes Brain Behav. 2018;17(8):e12516. Epub 2018/08/23. doi: 10.1111/gbb.12516 30133126.

66. Wells AM, Ridener E, Bourbonais CA, Kim W, Pantazopoulos H, Carroll FI, et al. Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism. J Neurosci. 2017;37(32):7656–68. Epub 2017/07/05. doi: 10.1523/JNEUROSCI.0885-17.2017 28674176; PubMed Central PMCID: PMC5551063.

67. Logan S, Owen D, Chen S, Chen WJ, Ungvari Z, Farley J, et al. Simultaneous assessment of cognitive function, circadian rhythm, and spontaneous activity in aging mice. Geroscience. 2018;40(2):123–37. Epub 2018/04/25. doi: 10.1007/s11357-018-0019-x 29687240; PubMed Central PMCID: PMC5964055.

68. Balzekas I, Hernandez J, White J, Koh S. Confounding effect of EEG implantation surgery: Inadequacy of surgical control in a two hit model of temporal lobe epilepsy. Neurosci Lett. 2016;622:30–6. Epub 2016/04/21. doi: 10.1016/j.neulet.2016.04.033 27095588; PubMed Central PMCID: PMC5642288.

69. Kadam SD, D'Ambrosio R, Duveau V, Roucard C, Garcia-Cairasco N, Ikeda A, et al. Methodological standards and interpretation of video-electroencephalography in adult control rodents. A TASK1-WG1 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia. 2017;58 Suppl 4:10–27. Epub 2017/11/07. doi: 10.1111/epi.13903 29105073; PubMed Central PMCID: PMC5679281.

70. Colas D, Chuluun B, Warrier D, Blank M, Wetmore DZ, Buckmaster P, et al. Short-term treatment with the GABAA receptor antagonist pentylenetetrazole produces a sustained pro-cognitive benefit in a mouse model of Down's syndrome. Br J Pharmacol. 2013;169(5):963–73. Epub 2013/03/16. doi: 10.1111/bph.12169 23489250; PubMed Central PMCID: PMC3696321.

71. Ribeiro RL, De Lima TC. Participation of GABAA receptors in the modulation of experimental anxiety by tachykinin agonists and antagonists in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(5):861–9. Epub 2002/10/09. doi: 10.1016/s0278-5846(01)00331-1 12369258.

72. Walia V, Garg C, Garg M. Anxiolytic-like effect of pyridoxine in mice by elevated plus maze and light and dark box: Evidence for the involvement of GABAergic and NO-sGC-cGMP pathway. Pharmacol Biochem Behav. 2018;173:96–106. Epub 2018/07/25. doi: 10.1016/j.pbb.2018.06.001 30040985.

73. Chen B, Choi H, Hirsch LJ, Katz A, Legge A, Buchsbaum R, et al. Psychiatric and behavioral side effects of antiepileptic drugs in adults with epilepsy. Epilepsy Behav. 2017;76:24–31. Epub 2017/09/22. doi: 10.1016/j.yebeh.2017.08.039 28931473.

74. Hansen CC, Ljung H, Brodtkorb E, Reimers A. Mechanisms Underlying Aggressive Behavior Induced by Antiepileptic Drugs: Focus on Topiramate, Levetiracetam, and Perampanel. Behav Neurol. 2018;2018:2064027. Epub 2018/12/26. doi: 10.1155/2018/2064027 30581496; PubMed Central PMCID: PMC6276511.


Článek vyšel v časopise

PLOS One


2019 Číslo 11